Advertisement

Scheduling Unrelated Parallel Machines with Sequence Dependent Setup Times and Weighted Earliness–Tardiness Minimization

  • Eva ValladaEmail author
  • Rubén Ruiz
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 60)

Abstract

This work deals with the unrelated parallel machine scheduling problem with machine and job-sequence dependent setup times. The studied objective is the minimization of the total weighted earliness and tardiness. We study existing Mixed Integer Programming (MIP) mathematical formulations. A genetic algorithm is proposed, which includes a procedure for inserting idle times in the production sequence in order to improve the objective value. We also present a benchmark of small and large instances to carry out the computational experiments. After an exhaustive computational and statistical analysis, the conclusion is that the proposed method shows a good performance.

Keywords

Completion Time Setup Time Parallel Machine Idle Time Relative Percentage Deviation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allahverdi, A., Gupta, J.N.D., Aldowaisan, T.: A review of scheduling research involving setup considerations. Omega, The International Journal of Management Science 27(2), 219–239 (1999)CrossRefGoogle Scholar
  2. 2.
    Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. European Journal of Operational Research 187(3), 985–1032 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Allahverdi, A., Soroush, H.M.: The significance of reducing setup times/setup costs. European Journal of Operational Research 187(3), 978–984 (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Anghinolfi, D., Paolucci, M.: Parallel machine total tardiness scheduling with a new hybrid metaheuristic approach. Computers & Operations Research 34(11), 3471–3490 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Baker, K.R., Scudder, G.D.: Sequencing with earliness and tardiness penalties. a review. Operations Research 38(1), 22–36 (2000)Google Scholar
  6. 6.
    Balakrishnan, N., Kanet, J.J., Sridharan, V.: Early/tardy scheduling with sequence dependent setups on uniform parallel machines. Computers & Operations Research 26(2), 127–141 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Behnamian, J., Zandieh, M., Ghomi, S.M.T.F.: Due window scheduling with sequence-dependent setup on parallel machines using three hybrid metaheuristic algorithms. International Journal of Advanced Manufacturing Technology 44(7-8), 795–808 (2009)CrossRefGoogle Scholar
  8. 8.
    Bilge, U., Kıraç, F., Kurtulan, M., Pekgün, P.: A tabu search algorithm for parallel machine total tardiness problem. Computers & Operations Research 31(3), 397–414 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Cheng, T.C.E., Sin, C.C.S.: A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research 47(3), 271–292 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Şerifoğlu, F.S., Ulusoy, G.: Parallel machine scheduling with earliness and tardiness penalties. Computers & Operations Research 26(8), 773–787 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Etiler, O., Toklu, B., Atak, M., Wilson, J.: A genetic algorithm for flow shop scheduling problems. Journal of the Operational Research Society 55(8), 830–835 (2004)zbMATHCrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  13. 13.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  14. 14.
    Graham, R.L., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Guang, F., Lau, H.C.: Efficient algorithms for machine scheduling problems with earliness and tardiness penalties. Annals of Operations Research 159(1), 93–95 (2008)Google Scholar
  16. 16.
    Guinet, A.: Scheduling sequence-dependent jobs on identical parallel machines to minimize completion time criteria. International Journal of Production Research 31(7), 1579–1594 (1993)CrossRefGoogle Scholar
  17. 17.
    Heady, R.B., Zhu, Z.: Minimizing the sum of job earliness and tardiness in a multimachine system. International Journal of Production Research 36(6), 1619–1632 (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  19. 19.
    Kanet, J.J., Sridharan, V.: Scheduling with inserted idle time: Problem taxonomy and literature review. Operations Research 48(1), 99–110 (2000)CrossRefGoogle Scholar
  20. 20.
    Kedad-Sidhoum, S., Rios-Solis, Y.A., Sourd, F.: Lower bounds for the earliness-tardiness scheduling problem on parallel machines with distinct due dates. European Journal of Operational Research 189(3), 1305–1316 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kim, D.W., Kim, K.H., Jang, W., Chen, F.F.: Unrelated parallel machine scheduling with setup times using simulated annealing. Robotics and Computer Integrated Manufacturing 18(3-4), 223–231 (2002)CrossRefGoogle Scholar
  22. 22.
    Kim, D.W., Na, D.G., Chen, F.F.: Unrelated parallel machine scheduling with setup times and a total weighted tardiness objective. Robotics and Computer Integrated Manufacturing 19(1-2), 173–181 (2003)CrossRefGoogle Scholar
  23. 23.
    Kurz, M., Askin, R.: Heuristic scheduling of parallel machines with sequence-dependent set-up times. International Journal of Production Research 39(16), 3747–3769 (2001)zbMATHCrossRefGoogle Scholar
  24. 24.
    Lam, K., Xing, W.: New trends in parallel machine scheduling. International Journal of Operations & Production Management 17(3), 326–338 (1997)CrossRefGoogle Scholar
  25. 25.
    Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Annals of Discrete Mathematics 1, 343–362 (1977)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Logendran, R., McDonell, B., Smucker, B.: Scheduling unrelated parallel machines with sequence-dependent setups. Computers & Operations Research 34(11), 3420–3438 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    McNaughton, R.: Scheduling with deadlines and loss functions. Management Science 6(1), 1–12 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Mokotoff, E.: Parallel machine scheduling problems: A survey. Asia-Pacific Journal of Operational Research 18(2), 193–242 (2001)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Montgomery, D.: Design and Analysis of Experiments, fifth edn. John Wiley & Sons, New York (2007)Google Scholar
  30. 30.
    Omar, M.K., Teo, S.C.: Minimizing the sum of earliness/tardiness in identical parallel machines schedule with incompatible job families: An improved mip approach. Applied Mathematics and Computation 181(2), 1008–1017 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Onwubolu, G., Mutingi, M.: Genetic algorithm for minimizing tardiness in flow-shop scheduling. Production Planning & Control 10(5), 462–471 (1999)CrossRefGoogle Scholar
  32. 32.
    Potts, C., Van Wassenhove, L.: A decomposition algorithm for the single machine total tardiness problem. Operations Research Letters 1(5), 177–181 (1982)zbMATHCrossRefGoogle Scholar
  33. 33.
    Rabadi, G., Moraga, R., Al-Salem, A.: Heuristics for the unrelated parallel machine scheduling problem with setup times. Journal of Intelligent Manufacturing 17(1), 85–97 (2006)CrossRefGoogle Scholar
  34. 34.
    Radhakrishnan, S., Ventura, J.A.: Simulated annealing for parallel machine scheduling with earliness-tardiness penalties and sequence-dependent set-up times. International Journal of Production Research 38(10), 2233–2252 (2000)zbMATHCrossRefGoogle Scholar
  35. 35.
    Reeves, C.R.: A Genetic Algorithm for Flowshop Sequencing. Computers & Operations Research 22(1), 5–13 (1995)zbMATHCrossRefGoogle Scholar
  36. 36.
    Rios-Solis, Y.A., Sourd, F.: Exponential neighborhood search for a parallel machine scheduling problem. Computers & Operations Research 35(5), 1697–1712 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Ruiz, R., Allahverdi, A.: No-wait flowshop with separate setup times to minimize maximum lateness. International Journal of Advanced Manufacturing Technology 35(5-6), 551–565 (2007)CrossRefGoogle Scholar
  38. 38.
    Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop scheduling problem. OMEGA, The International Journal of Management Science 34(5), 461–476 (2006)CrossRefGoogle Scholar
  39. 39.
    Vallada, E., Ruiz, R.: A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operations Research 211(3), 611–622 (2011)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Vallada, E., Ruiz, R.: Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem. Omega, The International Journal of Management Science 38(1-2), 57–67 (2010)CrossRefGoogle Scholar
  41. 41.
    Vallada, E., Ruiz, R., Minella, G.: Minimising total tardiness in the m-machine flowshop problem: a review and evaluation of heuristics and metaheuristics. Computers & Operations Research 35(4), 1350–1373 (2008)zbMATHCrossRefGoogle Scholar
  42. 42.
    Yang, W.H., Liao, C.J.: Survey of scheduling research involving setup times. International Journal of Systems Science 30(2), 143–155 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Yi, Y., Wang, D.W.: Soft computing for scheduling with batch setup times and earliness-tardiness penalties on parallel machines. Journal of Intelligent Manufacturing 14(3-4), 311–322 (2003)CrossRefGoogle Scholar
  44. 44.
    Zhang, L., Wang, L., Zheng, D.Z.: An adaptive genetic algorithm with multiple operators for flowshop scheduling. International Journal of Advanced Manufacturing Technology 27(5), 580–587 (2006)CrossRefGoogle Scholar
  45. 45.
    Zhu, Z., Heady, R.B.: Minimizing the sum of earliness/tardiness in multi-machine scheduling: a mixed integer programming approach. Computers & Industrial Engineering 38(2), 297–305 (2000)CrossRefGoogle Scholar
  46. 46.
    Zhu, Z., Meredith, P.H.: Defining critical elements in JIT implementation: a survey. Industrial Management & Data Systems 95(8), 21–28 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática (ITI), Ciudad Politécnica de la Innovación, Edificio 8G, Acceso BUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations