Advertisement

Strategic Scheduling Games: Equilibria and Efficiency

  • Laurent GourvèsEmail author
  • Jérôme Monnot
  • Orestis A. Telelis
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 60)

Abstract

Motivated by today’s decentralized operation of interconnected computing platforms, classical task scheduling models are revisited under a game theoretic perspective. Instead of being designed by a central entity which aims at optimizing an aggregate efficiency measure, task allocations emerge through aggregated localized decisions taken by a group of autonomous self-interested agents. The outcome is sought as an equilibrium whose overall social efficiency typically diverges from the optimal group’s choice. This divergence, captured by a measure that came to be known as the Price of Anarchy, can be alleviated by local scheduling policies called Coordination Mechanisms. This chapter reviews standard task scheduling models, dedicated coordination mechanisms and their influence on the price of anarchy. It also exemplifies the design and analysis of coordination mechanisms on a particular scheduling model with setup times, and discusses open research questions.

Keywords

Nash Equilibrium Completion Time Coordination Mechanism Strategy Profile Strategic Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by French National Agency (ANR), project COCA ANR-09-JCJC-0066-01. This work was carried out during the tenure of an ERCIM “Alain Benssousan” Fellowship Program of Orestis A. Telelis.

References

  1. 1.
    Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 189–198 (2007)Google Scholar
  2. 2.
    Angel, E., Bampis, E., Pascual, F.: Truthful algorithms for scheduling selfish tasks on parallel machines. Theor. Comput. Sci. 369(1-3), 157–168 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Angel, E., Bampis, E., Thibault, N.: Randomized truthful algorithms for scheduling selfish tasks on parallel machines. In: Proceedings of the 9th Latin American Theoretical Informatics Symposium (LATIN), Springer LNCS 6034, pp. 38–48 (2010)Google Scholar
  4. 4.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, E., Wexler, T., Roughgarden, T.: The Price of Stability for Network Design with Fair Cost Allocation. SIAM Journal on Computing 38(4), 1602–1623 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aspnes, J., Azar, Y., Fiat, A., Plotkin, S.A., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. Journal of the ACM 44(3), 486–504 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Auletta, V., Prisco, R.D., Penna, P., Persiano, G.: Deterministic truthful approximation mechanisms for scheduling related machines. In: Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS), Springer LNCS 2996, pp. 608–619 (2004)Google Scholar
  7. 7.
    Aumann, R.J.: Acceptable points in games of perfect information. Pacific Journal of Mathematics 10, 381–417 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer (1999)Google Scholar
  9. 9.
    Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria. Theoretical Computer Science 361(2–3), 200–209 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Azar, Y., Jain, K., Mirrokni, V.S.: (almost) optimal coordination mechanisms for unrelated machine scheduling. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 323–332 (2008)Google Scholar
  11. 11.
    Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line assignments. Journal of Algorithms 18, 221–237 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Braess, D.: Über ein paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Braess, D.: On a Paradox of Traffic Planning. Transportation Science 39(4), 446–450 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 815–824 (2009)Google Scholar
  15. 15.
    Chen, B.: A better heuristic for preemptive parallel machine scheduling with batch setup times. SIAM Journal on Computing 22, 1303–1318 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Chen, B., Ye, Y., Zhang, J.: Lot-sizing scheduling with batch setup times. Journal of Scheduling 9(3), 299–310 (2006)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM Journal on Computing 9, 91–103 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Christodoulou, G., Gourvès, L., Pascual, F.: Scheduling Selfish Tasks: About the Performance of Truthful Algorithms. In: Proceedings of the International Computing and Combinatorics Conference (COCOON), Springer LNCS 4598, pp. 187–197 (2007)Google Scholar
  19. 19.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination Mechanisms. In: Proceedings of the International Colloquium on Automata,Languages and Programming (ICALP), Springer LNCS 3142, pp. 345–357 (2004)Google Scholar
  20. 20.
    Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Transactions on Algorithms 3(1) (2007)Google Scholar
  21. 21.
    Dobson, G.: Scheduling independent tasks on uniform processors. SIAM Journal on Computing 13, 705–716 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dürr, C., Nguyen, T.K.: Non-clairvoyant Scheduling Games. In: Proceedings of the International Symposium on Algorithmic Game Theory (SAGT), Springer LNCS 5814, pp. 135–146 (2009)Google Scholar
  23. 23.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibrium in load balancing. ACM Transactions on Algorithms 3(3) (2007)Google Scholar
  24. 24.
    Fiat, A., Kaplan, H., Levy, M., Olonetsky, S.: Strong Price of Anarchy for Machine Load Balancing. In: Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP), Springer LNCS 4596, pp. 583–594 (2007)Google Scholar
  25. 25.
    Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT 19, 312–320 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Friesen, D.K.: Tighter bounds for LPT scheduling on uniform processors. SIAM Journal on Computing 16, 554–560 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash equilibria for scheduling on restricted parallel links. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 613–622 (2004)Google Scholar
  28. 28.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: The Price of Anarchy for Restricted Parallel Links. Parallel Processing Letters 16(1), 117–132 (2006)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H.Freeman & Co Ltd (1979)Google Scholar
  30. 30.
    Gourvès, L., Monnot, J., Telelis, O.: Selfish Scheduling with Setup Times. In: Proceedings of the International Workshop on Internet and Network Economics (WINE), Springer LNCS 5929, pp. 292–303 (2009)Google Scholar
  31. 31.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)Google Scholar
  32. 32.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. SIAM Journal of Applied Mathematics 17, 416–429 (1969)zbMATHCrossRefGoogle Scholar
  33. 33.
    Ibarra, O.H., Kim, C.E.: Heuristic Algorithms for Scheduling Independent Tasks on Nonidentical Processors. Journal of the ACM 24(2), 280–289 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.: Coordination Mechanisms for Selfish Scheduling. Theoretical Computer Science 410, 1589–1598 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Jukna, S.: Extremal Combinatorics with Applications in Computer Science. Springer-Verlag (2001)Google Scholar
  36. 36.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case Equilibria. In: Proceedings of the International Symposium on Theoretical Aspects of Computer Science (STACS), Springer LNCS 1543, pp. 404–413 (1999)Google Scholar
  37. 37.
    Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation Algorithms for Scheduling Unrelated Parallel Machines. Mathematical Programmming 46, 259–271 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Monderer, D., Shapley, L.: Potential Games. Games and Economic Behanior 14, 124–143 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness: extended abstract. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1143–1152 (2007)Google Scholar
  40. 40.
    Nash, J.: Noncooperative Games. Annals of Mathematics 54, 289–295 (1951)MathSciNetGoogle Scholar
  41. 41.
    Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 129–140 (1999)Google Scholar
  42. 42.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.): Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  43. 43.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)Google Scholar
  44. 44.
    Pigou, A.C.: The Economics of Welfare. Macmillan (1920)Google Scholar
  45. 45.
    Rozenfeld, O., Tennenholtz, M.: Strong and Correlated Strong Equilibria in Monotone Congestion Games. In: Proceedings of the International Workshop on Internet & Network Economics (WINE), Springer LNCS 4286, pp. 74–86 (2006)Google Scholar
  46. 46.
    Schuurman, P., Vredeveld, T.: Performance Guarantees of Local Search for Multiprocessor Scheduling. INFORMS Journal on Computing 19(1), 52–63 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Schuurman, P., Wöginger, G.J.: Preemptive scheduling with job-dependent setup times. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 759–767 (1999)Google Scholar
  48. 48.
    Wöginger, G.J., Yu, Z.: A heuristic for preemptive scheduling with set-up times. Computing 49(2), 151–158 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Laurent Gourvès
    • 1
    Email author
  • Jérôme Monnot
    • 1
  • Orestis A. Telelis
    • 2
  1. 1.LAMSADE, CNRS FRE 3234Université de Paris-DauphineParisFrance
  2. 2.Center for Mathematics and Computer Science (CWI)AmsterdamThe Netherlands

Personalised recommendations