Skip to main content

Fiber to the Home Through Passive Optical Networks

  • Chapter
  • First Online:
WDM Systems and Networks

Part of the book series: Optical Networks ((OPNW))

Abstract

This chapter presents a comprehensive overview of current deployed and novel proposed protocols and subsystem architectures for passive optical networks. Emphasis is given to link layer techniques that allow resource sharing emphasizing bandwidth utilization or so-called dynamic bandwidth allocation techniques. In the transport layer, methods for ONU remote-seeding and their limitations are described as they allow for cost reduction, which is of paramount importance in the access area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kramer G, Mukherjee B, Maislos A (2003) Ethernet passive optical networks. In: Dixit S (ed) Multiprotocol over DWDM: building the next generation optical internet. John Wiley & Sons, New York, pp 229–275

    Google Scholar 

  2. ITU-T standardization (2005) G.983.1: Broadband optical access systems based on passive optical networks (PON). Available at http://www.itu.int/rec/TREC-G.983.1-200501-I/en/

  3. ITU-T standardization (2008) G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics. Available at http://www.itu.int/rec/TREC-G.984.1-200803-P/en/

  4. Effenberger FJ, Mukai H, Park S, Pfeiffer T (2009) Next-generation PON–part II: candidate systems for next-generation PON. IEEE Commun Mag 47(11):50–57

    Article  Google Scholar 

  5. IEEE p802.3ah (2003) Media access control parameters, physical layers and management parameters for subscriber access networks. Available at http://www.ieee802.org/3/efm/

  6. Tanaka K, Agata A, Horiuchi Y (2010) IEEE 802.3av 10G-EPON standardization and its research and development status. IEEE/OSA J Lightwave Technol 28(4):651–661

    Article  Google Scholar 

  7. Bianco A, Cuda D, Finochietto JM, Neri F, Valcarenghi M (2008) WONDER: a PON over a folded bus. In: Proceedings of IEEE global communications conference (GLOBECOM), New Orleans, LA, pp 2600–2604

    Google Scholar 

  8. Prat J, Lázaro JA, Chanclou P, Soila R, Velanas P, Teixeira A, Tosi Beleffi G, Tomkos I, Kanonakis K (2009) Passive optical network for long-reach scalable and resilient access. In: Proceedings of international conference on telecommunications (ConTEL), Marrakech, Morocco, pp 271–275

    Google Scholar 

  9. Pathak B, Ummy MA, Madamopoulos N, Antoniades N, Ali MA, Dorsinville R (2010) Experimental demonstration of a distributed ring-based EPON architecture. Photon Netw Commun 19(1):55–61

    Article  Google Scholar 

  10. Tancesvki L, Rush LA (2000) Impact of the beat noise on the performance of 2-D optical CDMA systems. IEEE Commun Lett 4(8):264–266

    Article  Google Scholar 

  11. Mestgagh DJG (1995) Fundamentals of multiple access optical fiber networks. Artech House, New York

    Google Scholar 

  12. Soerensen S (2000) Optical beat noise suppression and power equalization in subcarrier multiple access passive optical networks by downstream feedback. IEEE/OSA J Lightwave Technol 18(10):104–107

    Article  Google Scholar 

  13. Bock C, Prat J, Walker SD (2005) Hybrid WDM/TDM PON using the AWG FSR and featuring centralized light generation and dynamic bandwidth allocation. IEEE/OSA J Lightwave Technol 23(12):3981–3988

    Article  Google Scholar 

  14. Kitayama K-I, Wang X, Wada N (2006) OCDMA over WDM PON—solution path to gigabit-symmetric FTTH. IEEE/OSA J Lightwave Technol 24(4):1654–1662

    Article  Google Scholar 

  15. Baik J-S, Lee C-H (2006) Hybrid WDM/SCMA-PON using wavelength-locked Fabry–Pérot laser diodes. IEEE Photonics Technol Lett 18(15):1585–1587

    Article  Google Scholar 

  16. Iannone PP, Reichmann KC (2010) Optical access beyond 10 Gb/s PON. In: Proceedings of European conference on optical communications (ECOC), paper Tu.3.B.1, Torino, Italy

    Google Scholar 

  17. Frigo NJ, Iannone PP, Magill PD, Darcie TE, Downs MM, Desai BN, Koren U, Koch TL, Dragone C, Presby HM, Bodeep GE (1994) A wavelength-division multiplexed passive optical network with cost-shared components. IEEE Photonics Technol Lett 6(11):1365–1367

    Article  Google Scholar 

  18. Payoux F, Chanclou P, Moignard M, Brenot R (2005) Gigabit optical access using WDM PON based on spectrum slicing and reflective SOA. In: Proceedings of European conference on optical communications (ECOC), vol 3. Glasgow, UK, pp 455–456

    Google Scholar 

  19. Healey P, Townsend P, Ford C, Johnston L, Townley P, Lealman I, Rivers L, Perrin S, Moore R (2011) Spectral slicing WDM-PON using wavelength-seeded reflective SOAs. Electron Lett 37(19):1181–1182

    Article  Google Scholar 

  20. Park SJ, Lee CH, Jeong KT, Park HJ, Ahn JG, Song KH (2004) Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. IEEE/OSA J Lightwave Technol 22(11):2582–2591

    Article  Google Scholar 

  21. Choi KM, Baik JS, Lee CH (2006) Color-free operation of dense WDM-PON based on the wavelength-locked Fabry-Perot laser diodes injecting a low-noise BLS. IEEE Photonics Technol Lett 18(10):1167–1169

    Article  Google Scholar 

  22. Park S-J, Choi Y-B, Oh J-M, Koo S-G, Lee D (2007) An evolution scenario of a broadband access network using R-SOA-Based WDM-PON technologies. IEEE/OSA J Lightwave Technol 25(11):3479–3487

    Article  Google Scholar 

  23. Berrettini G, Meloni G, Giorgi L, Ponzini F, Cavaliere F, Ghiggino P, Poti L, Bogoni A (2009) Colorless WDM-PON performance improvement exploiting a service-ONU for multiwavelength distribution. In: Proceddings of IEEE/OSA optical fiber communications conference (OFC), paper OMN2, San Diego, CA

    Google Scholar 

  24. Schrenk B, Chatzi S, Bonada F, Lazaro JA, Klonidis D, Tomkos I, Prat J (2009) C + L band remote node for amplification in extended reach full-duplex 10 Gb/s WDM/TDM passive optical networks RX RN. In: Proceedings of European conference on optical communications (ECOC), paper P6.19,Vienna, Austria

    Google Scholar 

  25. Takesue H, Sugie T (2003) Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources. IEEE/OSA J Lightwave Technol 21(11):2546–2556

    Article  Google Scholar 

  26. Hung W, Chan CK, Chen LK, Tong F (2003) An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser. IEEE Photonics Technol Lett 15(10):1476–1478

    Article  Google Scholar 

  27. Prat J, Polo V, Bock C, Arellano C, Vegas Olmos JJ (2005) Full-duplex single fiber transmission using FSK downstream and IM remote upstream modulations for fiber-to-the-home. IEEE Photonics Technol Lett 17(3):702–704

    Article  Google Scholar 

  28. Martínez JJ, Garcés Gregorio JI, López Lucia A, Villafranca Velasco A, Aguado JC, Losada Binué MA (2008) Novel WDM-PON architecture based on a spectrally efficient IM-FSK scheme using DMLs and RSOAs. IEEE/OSA J Lightwave Technol 26(3):350–356

    Article  Google Scholar 

  29. Vlachos K, Zhang J, Cheyns J, Sulur Chi N, Van Breusegem E, Tafur Monroy I, Jennen JGL, Holm-Nielsen PV, Peucheret C, O’Dowd R, Demeester P, Koonen AMJ (2003) An optical IM/FSK coding technique for the implementation of a label-controlled arrayed waveguide packet router. IEEE/OSA J Lightwave Technol 21(11):2617–2628

    Article  Google Scholar 

  30. Vegas Olmos JJ, Tafur Monroy I, Koonen AMK (2003) High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources. Opt Express 11(23):3136–3140

    Article  Google Scholar 

  31. Vodhanel RS, Elrefaie AF, Iqbal MZ, Wagner RE, Gimlett JL, Tsuji S (1990) Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems. IEEE/OSA J Lightwave Technol 8(9):1379–1386

    Article  Google Scholar 

  32. Savory SJ, Gavioli G, Killey RI, Bayvel P (2007) Transmission of 42.8Gbit/s polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation. In Proceedings of IEEE/OSA optical fiber communications conference (OFC), paper OTuA1, Anaheim, CA

    Google Scholar 

  33. Lavrova OA, Rau L, Blumenthal DJ (2002) 10-Gb/s Agile wavelength conversion with nanosecond tuning times using a multisection widely tunable laser. IEEE/OSA J Lightwave Technol 20(4):712–717

    Article  Google Scholar 

  34. Kobayashi S, Yamamoto Y, Ito M, Kimura T (1982) Direct frequency modulation in AlGaAs semiconductor lasers. IEEE J Quant Electron 18(4):582–595

    Article  Google Scholar 

  35. Hossain ASMD, Dorsinville R, Ali MA, Shami A, Assi C (2006) Ring-based local access PON architecture for supporting private networking capability. J Opt Netw 5(1):26–39

    Article  Google Scholar 

  36. Brunnel H (1986) Message delay in TDMA channels with contiguous output. IEEE Trans Commun 34(7):681–684

    Article  Google Scholar 

  37. Byun HJ, Nho JM, Lim JT (2003) Dynamic bandwidth allocation algorithm in Ethernet passive optical networks. Electron Lett 39(13):1001–1002

    Article  Google Scholar 

  38. Kramer G, Mukherjee B, Pesavento G (2002) Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network. Photon Netw Commun 4(1):89–107

    Article  Google Scholar 

  39. Kramer G, Mukherjee B, Ye Y, Dixit S, Hirth R (2002) Supporting differentiated classes of service in Ethernet passive optical networks. J Opt Netw 1(8):280–298

    Google Scholar 

  40. Luo Y, Ansari N (2005) Bandwidth allocation for multiservice access on EPONs. IEEE Commun Mag 43(2):16–21

    Article  Google Scholar 

  41. Kim H, Park H, Kang C, Kim C, Yoo G (2005) Sliding cycle time-based mac protocol for service level agreeable Ethernet passive optical networks. In: Proceedings of IEEE international conference communications (ICC), pp 1848–1852, Seoul, Korea

    Google Scholar 

  42. Choi S-I (2004) Cycling polling-based dynamic bandwidth allocation for differentiated classes of service in Ethernet passive optical networks. Photon Netw Commun 7(1):87–96

    Article  Google Scholar 

  43. Chang C-H, Kourtessis P, Senior JM (2006) GPON service level agreement based dynamic bandwidth assignment protocol. Electron Lett 42(20):1173–1174

    Article  Google Scholar 

  44. Choi S-I, Huh J (2002) Dynamic bandwidth allocation algorithm for multimedia services over Ethernet PONs. ETRI Journal 24(6):465–468

    Article  Google Scholar 

  45. Assi C, Ye Y, Dixit S, Ali MA (2003) Dynamic bandwidth allocation for quality-of-service over Ethernet PONs. IEEE J Select Areas Commun 21(9):1467–1477

    Article  Google Scholar 

  46. Ghani N, Shami A, Assi C, Raja M (2004) Intra-ONU bandwidth scheduling in Ethernet passive optical networks. IEEE J Select Areas Commun 8(11):683–685

    Google Scholar 

  47. Zheng J (2006) Efficient bandwidth allocation algorithm for Ethernet passive optical networks. IEE Proc Commun 153(3):464–468

    Article  Google Scholar 

  48. Sherif SR, Hadjiantonis A, Ellinas G, Assi C, Ali M (2004) A novel decentralized Ethernet-based PON access architecture for provisioning differentiated QoS. IEEE/OSA J Lightwave Technol 22(11):2483–2497

    Article  Google Scholar 

  49. Ma M, Liu L, Cheng T-H (2005) Adaptive scheduling for differentiated services in an Ethernet passive optical network. IEEE J Select Areas Commun 4(10):661–670

    Google Scholar 

  50. Nowak D, Perry P, Murphy J (2004) A novel service level agreement based algorithm for differentiated services enabled Ethernet PONs. In: Procedings of IEEE international conference optical internet (IEICE), vol 1. Yokohama, Japan, pp 598–599

    Google Scholar 

  51. Yang YM, Ahny B, Nho J (2005) Supporting quality of service by using delta dynamic bandwidth allocations in Ethernet passive optical network. J Opt Netw 4(2):68–81

    Article  Google Scholar 

  52. Banerjee A, Kramer G, Mukherjee B (2006) Fair sharing using dual service-level agreements to achieve open access in an Ethernet passive optical network (EPON). IEEE J Select Areas Commun 24(8):32–43

    Google Scholar 

  53. Ma M, Zhu Y, Cheng T.-H (2003) A bandwidth guaranteed polling MAC protocol for Ethernet passive optical networks. In: Proceedings of IEEE international conference on computer communications (INFOCOM), vol 1. San Francisco, CA, pp 122–131

    Google Scholar 

  54. Merayo N, Durán R-J, Fernández P, Lorenzo RM, de Miguel I, Abril EJ (2009) Bandwidth allocation algorithm based on automatic weight adaptation to provide client and service differentiation. Photon Netw Commun 1(1):119–128

    Article  Google Scholar 

  55. Jiménez T, Merayo N, Fernández P, Durán RJ, Lorenzo M, Fernández N, de Miguel I, Abril EJ (2010) Self-adjustment bandwidth algorithm to ensure bandwidth levels in multi-profile LR-EPONs under heterogeneous traffic load. In: Proccedings of European conference on network and optical communications (NOC), vol 1. Algarve, Portugal, pp 1353–358

    Google Scholar 

  56. McGarry MP, Reisslein M, Maier M (2006) WDM Ethernet passive optical networks (EPONs). IEEE Commun Mag 44(2):15–22

    Article  Google Scholar 

  57. McGarry MP, Reisslein M (2006) Bandwidth management for WDM EPONs. J Opt Netw 5(9):637–654

    Article  Google Scholar 

  58. Kwong K.-H, Harle D, Andonovic I (2004) Dynamic bandwidth allocation algorithm for differentiated services over WDM EPONs. In: Proceedings of IEEE international conference on communication systems (ICCS) , vol 1. Singapore, pp 116–120

    Google Scholar 

  59. Dhaini AR, Assi CM, Maier M, Shami A (2007) Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks. IEEE/OSA J Lightwave Technol 25(1):277–286

    Article  Google Scholar 

  60. Merayo N, González R, de Miguel I, Jiménez T, Durán RJ, Fernández P, Aguado JC, Lorenzo RM, Abril EJ (2009) Hybrid dynamic bandwidth and wavelenght allocation algorithm to support multi-service level profile in a WDM-EPON. In: Proceedings of international conference AccessNet, vol 1. Hong Kong, China, pp 1–13

    Google Scholar 

  61. Dhani AR, Assi C, Shami A (2006) Quality of service in TDM/WDM Ethernet passive optical networks (EPONs). In: Proceedings of IEEE symposium on computers and communications (ISCC), vol 1. Pula-Cagliary, Italy, pp 621–626

    Google Scholar 

  62. Van Deventer MO (1993) Power penalties due to reflection and Rayleigh backscattering in a single frequency bidirectional coherent transmission system. IEEE Photonics Technol Lett 5(7):851–854

    Article  Google Scholar 

  63. Fujiwara M, Kani MJ, Suzuki H, Iwatsuki K (2006) Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks. IEEE/OSA J Lightwave Technol 24(2):740–746

    Article  Google Scholar 

  64. Wood TH, Linke RA, Kasper BL, Carr EC (1998) Observation of coherent Rayleigh noise in single-source bidirectional optical fiber systems. IEEE/OSA J Lightwave Technol 6(2):346–352

    Article  Google Scholar 

  65. Gysel P, Staubli RK (1990) Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal. IEEE/OSA J Lightwave Technol 8(12):1792–1798

    Article  Google Scholar 

  66. Chow CW, Talli G, Townsend PD (2007) Rayleigh noise reduction in 10-Gb/s DWDM-PONs by wavelength detuning and phase-modulation-induced spectral broadening. IEEE Photonics Technol Lett 19(6):423–425

    Article  Google Scholar 

  67. Lázaro JA, Arrellano C, Polo V, Prat J (2007) Rayleigh scattering reduction by means of optical frequency dithering in passive optical networks with remotely seeded ONUs. IEEE Photonics Technol Lett 19(2):64–66

    Article  Google Scholar 

  68. Agrawal GP (1989) Nonlinear fiber optics. Elsevier Science & Technology Books, New York

    Google Scholar 

  69. Waarts RG, Friesem AA, Lichtman E, Yaffe HH, Braun R-P (1990) Nonlinear effects in coherent multichannel transmission through optical fibers. Procceedings of the IEEE 78(8):1344–1368

    Google Scholar 

  70. Martínez JJ, Garcés I, López A, Villafranca A, Losada MA (2010) Analysis of the influence of backscattered optical power over bidirectional PON links. Elsevier Opt Commun 283(10):2243–2250

    Article  Google Scholar 

  71. IDATE Consulting & Research (2009) World FTTx Markets. FTTx Market Report. Available at http://www.idate.org/en/Research-store

  72. IDATE Consulting & Research (2011) Status of FTTH in Europe. Available at http://www.idate.org/en/News

  73. Heshun L (2010) Fiber-optic broadband hits top gear. Huawei Communicate 57:17–20

    Google Scholar 

  74. FTTH Council Press Release (2011) Global FTTH Councils latest country ranking shows further momentum on all-fiber deployments. Available at http://www.ftthcouncil.org/en/newsroom

  75. Hutcheson OL (2008) FTTx: current status and the future. IEEE Commun Mag 24(12):90–95

    Article  Google Scholar 

  76. IDATE Consulting & Research (2009) FTTx: global operator rankings. Available at http://www.idate.org/en/Research-store

  77. Hutcheson L (2009) FTTH/FTTB in Asia-Pacific. In: Proceedings of FTTH conference in Asia Pacific, Melbourne, Australia. Available at http://www.ftthcouncilap.org

  78. Teknovus (2009) Teknovus Announces EPON FTTx in Russia and Belarus. Available at http://www.teknovus.com/News-Events/Press-Releases/2009/Teknovus-Announces-EPON-FTTx-in-Russia-and-Belarus

  79. Zager M (2007) Independent telcos continue rolling out fiber. Broadband Properties, 72–87. Available at http://broadbandproperties.com

  80. Press release of FTTH council (2009) Ranking of European FTTH penetration shows Scandinavia and smaller economies still ahead. FTTH Council Europe Annual Report 2010–2011. Available at http://www3.ftthcouncil.eu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

López, A., Merayo, N., Martínez, J.J., Fernández, P. (2012). Fiber to the Home Through Passive Optical Networks. In: Antoniades, N., Ellinas, G., Roudas, I. (eds) WDM Systems and Networks. Optical Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1093-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1093-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1092-8

  • Online ISBN: 978-1-4614-1093-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics