Skip to main content

Introduction

  • Chapter
  • First Online:
  • 616 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

During the early evolutionary years of Integrated Circuit (IC) design, most of the research emphasized the need for performance improvement of transistors and other computing blocks. Transistor performance was seen as one on the most important design bottlenecks in those times. In 1965, Gordon E. Moore came up with a series of visionary predictions. Till date these predictions are valid to a large extent and the semiconductor industry is predominantly driven by these predictions. In a nutshell, Moore suggested that the performance and design complexity of ICs would grow exponentially and double every 18–24 months. During the same period, cost of transistors would reduce roughly by the same proportion each time we hit the Moore’s next prediction. Interestingly, while Gordon Moore thought it was only some observations, history of semiconductor growth only suggests that the notion of it being a law indeed holds good.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  2. M. Horowitz, K.Y. Chih-Kong, S. Sidiropoulos, High-speed electrical signaling: overview and limitations. IEEE Micro 18(1), 12–24 (1998)

    Article  Google Scholar 

  3. R. Achar, M.S. Nakhla, Simulation of high-speed interconnects. Proc. IEEE 89(5), 693–728 (2001)

    Article  Google Scholar 

  4. S.H. Hall, G.W. Hall, J.A. McCall, High-Speed Digital System DesignA Handbook of Interconnect Theory and Design Practices (IEEE-Wiley Press, New York, 2000)

    Google Scholar 

  5. T.C. Edwards, M.B. Steer, Foundations of Interconnect and Microstrip Design (Wiley, New York, 2000)

    Google Scholar 

  6. C.R. Paul, Analysis of Multiconductor Transmission Lines (Wiley, New York, 1994)

    Google Scholar 

  7. H.B. Bakoglu, Circuits, Interconnections and Packaging (Addison Wesley Publishers, Reading, 1990)

    Google Scholar 

  8. E.G. Friedman, Clock distribution networks in synchronous digital integrated circuits. Proc. IEEE 89(5), 665–692 (2001)

    Article  Google Scholar 

  9. R. Ho, K.W. Mai, M.A. Horowitz, The future of wires. Proc. IEEE 89(4), 490–504 (2001)

    Article  Google Scholar 

  10. W.R. Davis et al., Demystifying 3D ICs: the pros and cons of going vertical. IEEE Des. Test Comput. 22(6), 498–510 (2005)

    Article  Google Scholar 

  11. J.A. Davis et al., Interconnect limits on gigascale integration (GSI) in the 21st century. Proc. IEEE 89(3), 305–324 (2001)

    Article  Google Scholar 

  12. A. Roy, M.H. Chowdhury, RF/Wireless interconnects in future on-chip and board-level clock distribution network, in Proceedings of the IEEE International Conference on Electro/Information Technology (2007), pp. 542–545

    Google Scholar 

  13. K. Banerjee, A. Mehrotra, Global (interconnect) warming. IEEE Circuits Devices Mag. 17(5), 16–32 (2001)

    Article  Google Scholar 

  14. H. Mavoori, Copper/low-k interconnects for smaller and faster circuits. J. Miner. Met. Mater. Soc. 51, 36 (1999)

    Article  Google Scholar 

  15. H. Cho, P. Kapur, K.C. Saraswat, Power comparison between high-speed electrical and optical interconnects for interchip communication. J. Lightwave Technol. 22(9), 2021–2033 (2004)

    Article  Google Scholar 

  16. W.J. Dally, J.W. Poulton, Digital Systems Engineering (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  17. B. Young, Digital Signal Integrity: Modeling and Simulation with Interconnects and Packages (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  18. M.S. Nakhla, Q.J. Zhang, Modeling and Simulation of High Speed VLSI Interconnects (Springer, Netherlands, 1994)

    Google Scholar 

  19. W.-K. Chen, The VLSI Handbook (CRC Press, New York, 2000)

    Google Scholar 

  20. R. Sharma, T. Chakravarty, A.B. Bhattacharyya, Analytical model for optimum signal integrity in PCB interconnects using ground tracks. IEEE Trans. Electromagn. Compat. 51(1), 67–77 (2009)

    Article  Google Scholar 

  21. V. Kumar, R. Bashirullah, A. Naeemi, Modeling, optimization and benchmarking of chip-to-chip electrical interconnects with low loss air-clad dielectrics, in Proceedings of the Electronic Components and Technology Conference (2011), pp. 2084–2090

    Google Scholar 

  22. C. Liu, S.K. Lim, A study of signal integrity issues in through-silicon-via-based 3D ICs, in Proceedings of the International Interconnect Technology Conference (2010), pp. 1–3

    Google Scholar 

  23. A.R. Djordjevié, T.K. Sarkar, Closed-form formulas for frequency-dependent resistance and inductance per unit length of microstrip and strip transmission lines. IEEE Trans. Microw. Theory Tech. 42(2), 241–248 (1994)

    Article  Google Scholar 

  24. J. Rubinstein, P. Penfield, M.A. Horowitz, Signal delay in RC tree networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2(3), 202–211 (1983)

    Article  Google Scholar 

  25. T. Lin, C. Mead, Signal delay in general RC networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 3(4), 331–349 (1984)

    Article  Google Scholar 

  26. W.C. Elmore, The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys. 19(1), 55–63 (1948)

    Article  Google Scholar 

  27. J.R. Brews, Overshoot controlled RLC interconnections. IEEE Trans. Electron Devices 38(1), 76–87 (1991)

    Article  Google Scholar 

  28. Y.I. Ismail, E.G. Friedman, J.L. Neves, Equivalent Elmore’s delay for RLC trees. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 19(1), 83–97 (2000)

    Article  Google Scholar 

  29. T. Sakurai, Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSI’s. IEEE Trans. Electron Devices 40(1), 118–124 (1993)

    Article  MathSciNet  Google Scholar 

  30. A. Vittal, M. Marek-Sadowska, Crosstalk reduction for VLSI. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 16(3), 290–298 (1997)

    Article  Google Scholar 

  31. J.A. Davis, J.D. Meindl, Compact distributed RLC interconnect models—part I: single line transient, time delay, and overshoot expressions. IEEE Trans. Electron Devices 47(11), 2068–2077 (2000)

    Article  Google Scholar 

  32. J.A. Davis, J.D. Meindl, Compact distributed RLC interconnect models—part II: coupled line transient expressions and peak crosstalk in multilevel networks. IEEE Trans. Electron Devices 47(11), 2078–2087 (2000)

    Article  Google Scholar 

  33. R. Venkatesan, J.A. Davis, J.D. Meindl, Compact distributed RLC interconnect models—part III: transients in single and coupled lines with capacitive load termination. IEEE Trans. Electron Devices 50(4), 1081–1093 (2003)

    Article  Google Scholar 

  34. R. Venkatesan, J.A. Davis, J.D. Meindl, Compact distributed RLC interconnect models—part IV: unified models for time delay, crosstalk and repeater insertion. IEEE Trans. Electron Devices 50(4), 1094–1102 (2003)

    Article  Google Scholar 

  35. P. Kapur, J.P. McVittie, K.C. Saraswat, Technology and reliability constrained future copper interconnects—part I: resistance modeling. IEEE Trans. Electron Devices 49(4), 590–597 (2002)

    Article  Google Scholar 

  36. M.T. Bohr, Interconnect scaling—the real limiter to high performance ULSI, in Proceedings of the 1995 IEEE International Electron Devices Meeting (1995), pp. 241–244

    Google Scholar 

  37. C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42(5), 567 (1998)

    Article  Google Scholar 

  38. N.D. Arora, Modeling and characterization of copper interconnects for SoC design, in Proceedings of the Simulation of Semiconductor Processes and Devices (2003), pp. 1–6

    Google Scholar 

  39. M. Clarke, Introducing low-k dielectrics into semiconductor processing. Application Note: MAL123, Mykrolis (2003)

    Google Scholar 

  40. T.J. Spencer, P.J. Joseph, T.H. Kim, M. Swaminathan, P.A. Kohl, Air-gap transmission lines on organic substrates for low-loss multiprocessor interconnects. IEEE Trans. Microw. Theory Tech. 55(9), 1919–1925 (2007)

    Article  Google Scholar 

  41. H. Cho, P. Kapur, K.C. Saraswat, Power comparison between high-speed electrical and optical interconnects for interchip communication. J. Lightwave Technol. 22(9), 2021–2033 (2004)

    Google Scholar 

  42. P. Kapur, K.C. Saraswat, Optical interconnects for future high performance integrated circuits. Phys. E Low Dimens. Syst. Nanostruct. 16(3–4), 620–627 (2003)

    Article  Google Scholar 

  43. D.A.B. Miller, Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88(6), 728–749 (2000)

    Article  Google Scholar 

  44. R.H. Havemann, J.A. Hutchby, High-performance interconnects: an integration overview. Proc. IEEE 89(5), 586–601 (2001)

    Article  Google Scholar 

  45. S. Luryi, J. Xu, A. Zaslavsky, Ultrafast nanophotonic devices for optical interconnects, In Future Trends in Microelectronics: From Nanophotonics to Sensors to Energy (2010), pp. 43–48

    Google Scholar 

  46. www.zurich.ibm.com/st/photonics/interconnects

  47. The 50G Silicon Photonics Link, Intel White Paper. www.intel.com

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Sharma, R., Chakravarty, T. (2012). Introduction. In: Compact Models and Measurement Techniques for High-Speed Interconnects. SpringerBriefs in Electrical and Computer Engineering(). Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1071-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1071-3_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1070-6

  • Online ISBN: 978-1-4614-1071-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics