Skip to main content

Genetic Variations in Metabolizing Enzymes

  • Chapter
  • First Online:
  • 990 Accesses

Abstract

Foreign compounds to which humans are exposed undergo metabolic conversion mediated by metabolizing enzymes before they are eliminated from the body. Phase I activation enzymes catalyze oxidation, hydrolysis, and reduction reactions. The functionalized compounds then proceed with further reactions catalyzed by phase II detoxification enzymes, which generally convert functionalized foreign compounds into less reactive and water-soluble metabolites, thus facilitating their elimination from the organism. Advances in this area of research have revealed that many metabolizing enzymes exhibit genetic polymorphisms which play a crucial role in individual variations in response to foreign compound-mediated effects. Investigations of individual responsiveness to drugs or certain chemicals have shown considerable deviations, in part due to variations in the expressions of foreign compound metabolizing enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Alvarez-Diez TM, Zheng J (2004) Mechanism-based inactivation of cytochrome P450 3A4 by 4-ipomeanol. Chem Res Toxicol 17:150–157

    Article  PubMed  CAS  Google Scholar 

  • Archer MC (1981) Reactive intermediates from nitrosamines. Adv Exp Med Biol 136:1027–1035

    PubMed  Google Scholar 

  • Baer BR, Rettie AE, Henne KR (2005) Bioactivation of 4-ipomeanol by CYP4B1: adduct characterization and evidence for an enedial intermediate. Chem Res Toxicol 18:855–864

    Article  PubMed  CAS  Google Scholar 

  • Baum M, Amin S, Guengerich FP, Hecht SS et al (2001) Metabolic activation of benzo[c]phenanthrene by cytochrome P450 enzymes in human liver and lung. Chem Res Toxicol 14:686–693

    Article  PubMed  CAS  Google Scholar 

  • Boocock DJ, Maggs JL, Brown K et al (2000) Major inter-species differences in the rates of O-sulphonation and O-glucuronylation of alpha-hydroxytamoxifen in vitro: a metabolic disparity protecting human liver from the formation of tamoxifen-DNA adducts. Carcinogenesis 21:1851–1858

    Article  PubMed  CAS  Google Scholar 

  • Czerwinski M, McLemore TL, Philpot RM et al (1991) Metabolic activation of 4-ipomeanol by complementary DNA-expressed human cytochromes P-450: evidence for species-specific metabolism. Cancer Res 51:4636–4638

    PubMed  CAS  Google Scholar 

  • Falzon M, McMahon JB, Schuller HM et al (1986) Metabolic activation and cytotoxicity of 4-Ipomeanol in human non-small cell lung cancer lines. Cancer Res 46:3484–3489

    PubMed  CAS  Google Scholar 

  • Ilic Z, Crawford D, Vakharia D et al (2010) Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. Toxicol Appl Pharmacol 242:241–246

    Article  PubMed  CAS  Google Scholar 

  • Jowsey IR, Jiang Q, Itoh K et al (2003) Expression of the aflatoxin B1-8,9-epoxide-metabolizing murine glutathione S-transferase A3 subunit is regulated by the Nrf2transcription factor through an antioxidant response element. Mol Pharmacol 64:1018–1028

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Shields PG, Caporaso NE et al (1994) Analysis of cytochrome P450 2E1 genetic polymorphisms in relation to human lung cancer. Cancer Epidemiol Biomarkers Prev 3:515–518

    PubMed  CAS  Google Scholar 

  • Kim SY, Laxmi YR, Suzuki N et al (2005) Formation of tamoxifen-DNA adducts via O-sulfonation, not O-acetylation, of alpha-hydroxytamoxifen in rat and human livers. Drug Metab Dispos 33:1673–1678

    Article  PubMed  CAS  Google Scholar 

  • Kiss I, Sándor J, Pajkos G, Bogner B et al (2000) Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1, 2E1, and glutathione-S-transferase M1 enzymes. Anticancer Res 20:519–522

    PubMed  CAS  Google Scholar 

  • Kondraganti SR, Fernandez-Salguero P et al (2003) Polycyclic aromatic hydrocarbon-inducible DNA adducts: evidence by 32P-postlabeling and use of knockout mice for Ah receptor-independent mechanisms of metabolic activation in vivo. Int J Cancer 103:5–11

    Article  PubMed  CAS  Google Scholar 

  • Li TK (2000) Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. J Stud Alcohol 61:5–12

    PubMed  CAS  Google Scholar 

  • Neafsey P, Ginsberg G, Hattis D et al (2009) Genetic polymorphism in CYP2E1: population distribution of CYP2E1 activity. J Toxicol Environ Health B Crit Rev 12:362–388

    Article  PubMed  CAS  Google Scholar 

  • Nimura Y, Yokoyama S, Fujimori M et al (1997) Genotyping of the CYP1A1 and GSTM1 genes in esophageal carcinoma patients with special reference to smoking. Cancer 80:852–857

    Article  PubMed  CAS  Google Scholar 

  • Oscarson M (2001) Genetic polymorphisms in the cytochrome P450 2A6 (CYP2A6) gene: implications for interindividual differences in nicotine metabolism. Drug Metab Dispos 29:91–95

    PubMed  CAS  Google Scholar 

  • Oscarson M, McLellan RA, Gullstén H et al (1999) Identification and characterisation of novel polymorphisms in the CYP2A locus: implications for nicotine metabolism. FEBS Lett 460:321–327

    Article  PubMed  CAS  Google Scholar 

  • Palma S, Cornetts T, Padua L et al (2007) Influence of glutathione S-transferase polymorphisms on genotoxic effects induced by tobacco smoke. Mutat Res 633:1–12

    Article  PubMed  CAS  Google Scholar 

  • Phillips DH, Carmichael PL, Hewer A et al (1996) Activation of tamoxifen and its metabolite alpha-hydroxytamoxifen to DNA-binding products: comparisons between human, rat and mouse hepatocytes. Carcinogenesis 17:89–94

    Article  PubMed  CAS  Google Scholar 

  • Rothman N, Shields PG, Poirier MC et al (1995) The impact of glutathione S-transferase M1 and cytochrome P450 1A1 genotypes on white-blood-cell polycyclic aromatic hydrocarbon-DNA adduct levels in humans. Mol Carcinog 14:63–68

    Article  PubMed  CAS  Google Scholar 

  • Sgambato A, Campisi B, Zupa A et al (2002) Glutathione S-transferase (GST) polymorphisms as risk factors for cancer in a highly homogeneous population from southern Italy. Anticancer Res 22:3647–3652

    PubMed  CAS  Google Scholar 

  • Shupe T, Sell S (2004) Low hepatic glutathione S-transferase and increased hepatic DNA adduction contribute to increased tumorigenicity of aflatoxin B1 in newborn and partially hepatectomized mice. Toxicol Lett 148:1–9

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Pitarque M, Ingelman-Sundberg M (2005) 3′-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression. Biochem Biophys Res Commun 340:491–497

    Article  PubMed  Google Scholar 

  • Watanabe J, Hayashi S, Kawajiri K (1994) Different regulation and expression of the human CYP2E1gene due to the RsaI polymorphism in the 5′-flanking region. J Biochem 116:321–326

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hwei Chen Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, CH. (2012). Genetic Variations in Metabolizing Enzymes. In: Activation and Detoxification Enzymes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1049-2_8

Download citation

Publish with us

Policies and ethics