Advertisement

Biogas Capture from Wastewaters: The High-Rate Anaerobic Digesters

  • Tasneem Abbasi
  • S. M. Tauseef
  • S. A. AbbasiEmail author
Chapter
  • 2.6k Downloads
Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL, volume 2)

Abstract

Starting with the introduction of anaerobic filter in 1967, a string of breakthroughs in anaerobic reactor design occurred during the late 1960s and early 1970s. These breakthroughs made it possible to extend the reach of anaerobic digestion from highly concentrated (in volatile organics content) manure slurry or sewage-sludge to much less concentrated industrial wastewaters. Later the reach was further extended to dilute wastewaters like domestic sewage and wash-waters.

The anaerobic digestion technology for handling wastewaters has by now advanced to such an extent that it is now possible to treat nearly all types of biodegradable wastewaters by employing one or the other type of high-rate anaerobic digester.

This chapter presents a state-of-the-art, bring out the sweep and the influence of anaerobic digestion vis a vis methane capture from wastewaters.

Keywords

Anaerobic Digestion Granular Sludge Upflow Anaerobic Sludge Blanket Anaerobic Reactor Active Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbasi T, Abbasi SA (2011) Formation and impact of granulation in fostering clean energy production and wastewater treatment in upflow sludge blanket (UASB) reactors. Renew Sustain Energy Rev (in press)Google Scholar
  2. Abbasi SA, Nipaney PC (1993) Modelling and simulation of biogas systems economics. Ashish Publishing House, New DelhiGoogle Scholar
  3. AgSTAR (2011) AD 101 Biogas recovery systems. US EPA. http://www.epa.gov/agstar/anaerobic/ad101/index.html. Accessed 1 May 2011Google Scholar
  4. Aiyuk S, Forrez I, Lieven DK, van Haandel A, Verstraete W (2006) Anaerobic and complementary treatment of domestic sewage in regions with hot climates – a review. Bioresour Technol 97(17):2225–2241. doi: 10.1016/j.biortech.2005.05.015 Google Scholar
  5. Ali M, Al-Sa ed R, Mahmoud N (2007) Start-up phase assessment of a UASB-septic tank system treating domestic septage. Arab J Sci Eng 32(1C):65–76Google Scholar
  6. Al-Jamal W, Mahmoud N (2009) Community onsite treatment of cold strong sewage in a UASB-septic tank. Bioresour Technol 100(3):1061–1068Google Scholar
  7. Al-Shayah M, Mahmoud N (2008) Start-up of an UASB-septic tank for community on-site treatment of strong domestic sewage. Bioresour Technol 99(16):7758–7766Google Scholar
  8. Álvarez JA, Armstrong E, Gómez M, Soto M (2008) Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions. Bioresour Technol 99(15):7051–7062. doi: 10.1016/j.biortech.2008.01.013 Google Scholar
  9. Andreoni V, Bonfanti P, Daffonchio D, Sorlini C, Villa M (1993) Anaerobic digestion of olive mill effluents: microbiological and processing aspects. J Environ Sci Health A 28(9):2041–2059Google Scholar
  10. Angenent LT, Banik GC, Sung S (2001) Anaerobic migrating blanket reactor treatment of low-strength wastewater at low temperatures. Water Environ Res 73(5):567–574Google Scholar
  11. Araujo DJ, Rocha SMS, Cammarota MC, Xavier AMF, Cardoso VL (2008) Anaerobic treatment of wastewater from the household and personal products industry in a hybrid bioreactor. Braz J Chem Eng 25(3):443–451Google Scholar
  12. Barbosa R, Sant’Anna G Jr (1989) Treatment of raw domestic sewage in an UASB reactor. Water Res 23(12):1483–1490Google Scholar
  13. Barry M, Colleran E (1982) Anaerobic digestion of silage effluent using an upflow fixed bed reactor. Agric Wastes 4(3):231–239Google Scholar
  14. Bell BA, Jeris J, Welday JM, Carrol R (1980) Anaerobic fluidised-bed treatment of thermal sludge conditioning decant liquor. In: U.S. Department of Energy Workshop/Seminar on Anaerobic Filters, Howey-In-The-Hills, FLGoogle Scholar
  15. Bhatti Z, Furukawa K, Fujita M (1993) Treatment performance and microbial structure of a granular consortium handling methanolic waste. J Ferment Bioeng 76(3):218–223Google Scholar
  16. Bogte J, Breure A, Van Andel J, Lettinga G (1993) Anaerobic treatment of domestic wastewater in small scale UASB reactors. Water Sci Technol 27:75–75Google Scholar
  17. Boller M (1993) Upflow anaerobic filtration of a sugar containing wastewater. Waste management problems in agro-industries 1992 28(2):125–134Google Scholar
  18. Borja R, Banks CJ (1994) Treatment of palm oil mill effluent by upflow anaerobic filtration. J Chem Technol Biotechnol 61(2):103–109Google Scholar
  19. Borja R, Martín A, Maestro R, Luque M, Durán MM (1993) Enhancement of the anaerobic digestion of wine distillery wastewater by the removal of phenolic inhibitors. Bioresour Technol 45(2):99–104. doi: 10.1016/0960-8524(93)90097-U Google Scholar
  20. Borja R, Banks CJ, Wang Z (1995) Performance of a hybrid anaerobic reactor, combining a sludge blanket and a filter, treating slaughterhouse wastewater. Appl Microbiol Biotechnol 43(2):351–357. doi: 10.1007/BF00172838 Google Scholar
  21. Brinkman J, Hack PJFM (1996) The paques anaerobic digestion process: a feasible and flexible treatment for solid organic waste. In: Hansen JA (ed) Management of urban biodegradable wastes: collection, occupational health, biological treatment, product quality criteria and end user demand. James and James (Science Publishers), Ltd, London, pp 181–192Google Scholar
  22. Canovas-Diaz M, Howell JA (1988) Downflow fixed-film anaerobic reactors stability studies under organic and hydraulic overloading at different working volume. Water Res 22(5):529–536Google Scholar
  23. Chambarlhac B, Bebin J, Albagnac G (1982) Stabilization and methane production by commercial scale digestion of green vegetable cannery wastes [Biogas], Energy from biomass and wastes VI: symposium. The Institute, Lake Buena Vista, Florida, pp 483–507Google Scholar
  24. Chavadej S (1980) Anaerobic filter for biogas production. Reg J Energy Heat Mass Transfer 2:31–44Google Scholar
  25. Chua H, Fung JPC (1996) Hydrodynamics in the packed bed of the anaerobic fixed film reactor. Water Sci Technol 33(8):1–6Google Scholar
  26. Chui HK, Fang HHP, Li YY (1994) Removal of formate from wastewater by anaerobic process. J Environ Eng 120(5):1308–1321Google Scholar
  27. Chynoweth DP, Srivastava VJ (1980) Methane production from marine biomass. In: International symposium on biogas, microalgae, and livestock wastes, Chicago, IL, pp 1–25Google Scholar
  28. Colleran E, Wilkie A, Barry M, Faherty G, O’kelly N, Reynolds PJ (1983) One and two stage anaerobic filter digestion of agricultural wastes. In: Third international symposium on anaerobic digestion, Boston, MAGoogle Scholar
  29. Converti A, Zilli M, Borghi M, Ferraiolo G (1990) The fluidized bed reactor in the anaerobic treatment of wine wastewater. Bioprocess Biosyst Eng 5(2):49–55Google Scholar
  30. Daoming S, Forster CF (1993) An examination of the start-up of a thermophilic upflow sludge blanket reactor treating a synthetic coffee waste. Environ Technol 14(10):965–972Google Scholar
  31. Delgado M, Guariola E, Bigeriego M (1992) Methane generation from water hyacinth biomass. J Environ Sci Health A 27(2):347–367Google Scholar
  32. Demuynck M, Nyns E (1984) Biogas plants in Europe. Int J Sustain Energy 2(6):477–485Google Scholar
  33. Deng L-W, Zheng P, Chen Z-A (2006) Anaerobic digestion and post-treatment of swine wastewater using IC-SBR process with bypass of raw wastewater. Process Biochem 41(4):965–969. doi: 10.1016/j.procbio.2005.10.022 Google Scholar
  34. Donnelly T, Sanderson JA, Anderson GK, Saw CB (1986) Anaerobe biologische Behandlung von fett- und sulfathaltigen Abwässern der Speisefettraffinerien. Gwf-Wasser/Abwasser 126(2):81–87Google Scholar
  35. Dries J, De Smul A, Goethals L, Grootaerd H, Verstraete W (1998) High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation 9(2):103–111Google Scholar
  36. Droste RL, Kennedy KJ (1987) Steady state kinetics of anaerobic downflow stationary fixed film reactors. Water Sci Technol 19(1–2):275–285Google Scholar
  37. Duff SJB, Kennedy KJ (1983) Effect of effluent recirculation on start-up and steady state operation of the downflow stationary fixed film (DSFF) reactor. Biotechnol Lett 5(5):317–320. doi: 10.1007/bf01141132 Google Scholar
  38. Duff SJB, van den Berg L (1982) Treatment of fish processing waste using the downflow stationary fixed film (DSFF) reactor. Biotechnol Lett 4(12):821–826Google Scholar
  39. Durai G, Rajasimman M (2011) Biological treatment of tannery wastewater – a review. J Environ Sci Technol 4(1):1–17. doi: 10.3923/jest.2011.1.17 Google Scholar
  40. El-Mamouni R, Guiot SR, Mercier P, Safi B, Samson R (1995) Liming impact on granules activity of the multiplate anaerobic reactor (MPAR) treating whey permeate. Bioprocess Biosyst Eng 12(1):47–53. doi: 10.1007/bf01112993 Google Scholar
  41. Elmitwalli T, El-mashad H, Mels A, Zeeman G (2003) Sustainable treatment of waste (water) in rural areas of Egypt. In: 2nd international symposium on ecological sanitation “Ecosan-Closing Loop”, Lubeck, Baltic Sea, GermanyGoogle Scholar
  42. Evans EA, Evans KM, Ulrich A, Ellsworth S, Abbasnezhad H (2009) Anaerobic processes. Water Environ Res 81(10):1293–1345. doi: 10.2175/106143009X12445568399613 Google Scholar
  43. Fakhru’l-Razi A (1994) Ultrafiltration membrane separation for anaerobic wastewater treatment. Water Sci Technol 30(12):321–327Google Scholar
  44. Gadre R, Godbole S (1986) Treatment of distillery waste by upflow anaerobic filter. Indian J Environ Health 28(1):54–59Google Scholar
  45. Geller A, Gottsching L (1985) Anaerobic fermentation of sulfite pulp mill effluents. Water Sci Technol 17(1):157Google Scholar
  46. Ghosh S, Henry MP (1982) Application of packed-bed upflow towers in two-phase anaerobic digestion. In: International conference on fixed-film biological processes, Kings Island, OH, USA, 1982. CONF-820485-1, Institute of Gas Technology, Chicago, IL (USA), p 23Google Scholar
  47. Goodwin JA, Stuart JB (1994) Anaerobic digestion of malt whisky distillery pot ale using upflow anaerobic sludge blanket reactors. Bioresour Technol 49(1):75–81Google Scholar
  48. Grin PC, Roersma RE, Lettinga G (1983) Anaerobic treatment of raw sewage at lower temperatures. In: BVC the European symposium on anaerobic wastewater treatment, Noordwijikerhout, The Netherlands, pp 335–347Google Scholar
  49. Guiot SR, van den Berg L (1985) Performance of an upflow anaerobic reactor combining a sludge blanket and a filter treating sugar waste. Biotechnol Bioeng 27(6):800–806. doi: 10.1002/bit.260270608 Google Scholar
  50. Gutiérrez JLR, Encina PAG, Fdz-Polanco F (1991) Anaerobic treatment of cheese-production wastewater using a UASB reactor. Bioresour Technol 37(3):271–276Google Scholar
  51. Habets LHA, de Boerstraat T (1999) Introduction of the IC reactor in the paper industry. Technical Report, Paques BV, The NetherlandsGoogle Scholar
  52. Habets LHA, Knelissen TH (1985) Application of the UASB reactor in anaerobic treatment of paper and board mill effluent. Water Sci Technol 17:61–75Google Scholar
  53. Habets LHA, Engelaar AJHH, Groeneveld N (1997) Anaerobic treatment of inuline effluent in an internal circulation reactor. Water Sci Technol 35(10):189–197. doi: 10.1016/S0273-1223(97)00203-5 Google Scholar
  54. Hall ER (1982) Biomass retention and mixing characteristics in fixed film and suspended growth anaerobic reactors. In: International association of water pollution. Research seminar on anaerobic treatment of wastewater in fixed film reactors, Copenhagen, pp 371–396Google Scholar
  55. Hall ER, Jovanovic M (1983) Anaerobic treatment of thermal sludge conditioning liquor with fixed-film and suspended-growth processes. In: Proceedings of the 37th industrial waste conference, Purdue UniversityGoogle Scholar
  56. Hanaki K, Chatsanguthai S, Matsuo T (1994) Characterization of accumulated biomass in anaerobic filter treating various types of substrates. Bioresour Technol 47(3):275–282Google Scholar
  57. Hanssen JF (1983) Produksjon av energirik biogass. Miljøteknikk 3:14–20Google Scholar
  58. Hanssen JF, Indergaard M, Østgaard K, Bævre OA, Pedersen TA, Jensen A (1987) Anaerobic digestion of Laminaria spp. and Ascophyllum nodosum and application of end products. Biomass 14(1):1–13Google Scholar
  59. Harada H, Momonoi K, Yamazaki S, Takizawa S (1994) Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics. Water Sci Technol 30(12):307–319Google Scholar
  60. Hayes TD, Chynoweth DP, Reddy KR, Schwegler B (1985) Methane from an integrated hyacinth treatment anaerobic digestion facility. In: Twelfth annual energy technology conference and exposition, Washington, pp 1782–1793Google Scholar
  61. He Y-L, Geng X-L, Yang S-H (1995) Sludge granulation in a UASB reactor for the treatment of soda-anthraquinone chemical wheat-straw pulp black liquor. Bioresour Technol 51(2–3):213–215. doi: 10.1016/0960-8524(94)00122-H Google Scholar
  62. Hickey RF (1982) Anaerobic fluidized bed treatment of whey: effect of organic loading rate, temperature and substrate concentration. In: First international conference on fixed-film biological processes, Kings Island, OH, pp 1456–1476Google Scholar
  63. Hills DJ (1980) Biogas from a high solids combination of dairy manure and barley straw. Trans Amer Soc Agric Eng 23(6):1500–1504Google Scholar
  64. Hilton MG, Archer DB (1988) Anaerobic digestion of a sulfate-rich molasses wastewater: inhibition of hydrogen sulfide production. Biotechnol Bioeng 31(8):885–888Google Scholar
  65. Hoeks FWJMM, Ten Hoopen HJG, Roels JA, Kuenen JG (1984) Anaerobic treatment of acid water (methane production in sulfate rich environment). Prog Ind Microbiol 20:113–119Google Scholar
  66. Hulshoff Pol L, Lettinga G (1986) New technologies for anaerobic wastewater treatment. Water Sci Technol 18(12):41–53Google Scholar
  67. Hulshoff Pol LW, De Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38(6):1376–1389. doi: 10.1016/j.watres.2003.12.002 Google Scholar
  68. Jeganathan J, Nakhla G, Bassi A (2007) Oily wastewater treatment using a novel hybrid PBR-UASB system. Chemosphere 67(8):1492–1501. doi: 10.1016/j.chemosphere.2006.12.047 Google Scholar
  69. Jewell WJ, Switzenbaum MS, Morris JW (1981) Municipal wastewater treatment with the anaerobic attached microbial film expanded bed process. J Wat Pollut Control Fed 53(4):482–490Google Scholar
  70. Kato MT, Field JA, Kleerebezem R, Lettinga G (1994) Treatment of low strength soluble wastewaters in UASB reactors. J Ferment Bioeng 77(6):679–686Google Scholar
  71. Kennedy KJ, Droste RL (1985) Startup of anaerobic downflow stationary fixed film (DSFF) reactors. Biotechnol Bioeng 27(8):1152–1165Google Scholar
  72. Kennedy KJ, Droste RL (1991) Anaerobic wastewater treatment in downflow stationary fixed film reactors. Water Sci Technol 24(8):157–177Google Scholar
  73. Kennedy KJ, Van den Berg L (1981) Effects of temperature and overloading on the performance of anaerobic fixed-film reactors. In: Proceedings of the 36th Purdue industrial waste conference, West Lafayette, IN, pp 678–685Google Scholar
  74. Kennedy K, Van den Berg L (1982a) Anaerobic digestion of piggery waste using a stationary fixed film reactor. Agric Wastes 4(2):151–158. doi: 10.1016/0141-4607(82)90023-3 Google Scholar
  75. Kennedy K, van den Berg L (1982b) Effect of height on the performance of anaerobic downflow stationary fixed film (DSFF) reactors treating bean blanching waste, Proceedings of the 37th industrial waste conference. Purdue University, West Lafayette, IN, pp 71–76Google Scholar
  76. Kennedy K, Van den Berg L (1982c) Stability and performance of anaerobic fixed film reactors during hydraulic overloading at 10–35°C. Water Res 16(9):1391–1398. doi: 10.1016/0043-1354(82)90223-8 Google Scholar
  77. Khan A (1995) Municipal waste water treatment and energy recovery. In: Khanna S, Mohan K (eds) Wealth from waste. Tata Energy Research Institute, New Delhi, pp 195–213Google Scholar
  78. Kirby KD (1980) The design and operation of a pilot scale anaerobic [Digester] for the treatment of piggery waste. Paper presented at the Agricultural Engineering Conference, GeelongGoogle Scholar
  79. Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102(8):4945–4953Google Scholar
  80. Lettinga G, Van Velsen AFM (1974) Anaerobic treatment of low-strength wastes. H2O 7:281Google Scholar
  81. Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4):699–734. doi: 10.1002/bit.260220402 Google Scholar
  82. Lettinga G, Hobma SW, Zeeuw WJd, Velsen AFMv, Hulshoff Pol LW, Klapwijk A (1983) Use of the upflow anaerobic sludge blanket process in waste water treatment. In: Wise DL (ed) Fuel gas system. CRC-Press, West Palm Beach, FL, pp 61–84Google Scholar
  83. Li A, Sutton PM, Corrado JJ (1982) Energy recovery from pretreatment of industrial wastes in the anaerobic fluidized bed process, First international conference on fixed film biological processes. University of Pittsburgh, Kings Island, OH, pp 1521–1541Google Scholar
  84. Liang Y, Qian Y, Hu J (1993) Research on the characteristics of start up and operation of treating brewery wastewater with an AFB reactor at ambient temperatures. Water Sci Technol 28(7):187–195Google Scholar
  85. Lo KV, Liao PH, Whitehead AJ (1985) Methane production at 22°C of laboratory-scale fixed-film reactors receiving screened dairy manure. Energy Agric 4:1–13Google Scholar
  86. Lo KV, Liao PH, Gao YC (1994) Anaerobic treatment of swine wastewater using hybrid UASB reactors. Bioresour Technol 47(2):153–157Google Scholar
  87. Mahmoud N, Zeeman G, Gijzen H, Lettinga G (2004) Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB-digester system. Water Res 38(9):2348–2358Google Scholar
  88. Maree J, Gerber A, McLaren A, Hill E (1987) Biological treatment of mining effluents. Environ Technol 8(1):53–64Google Scholar
  89. Martenson L, Frostell B (1982) Anaerobic wastewater treatment in a carrier assisted sludge bed reactor. In: Proceedings of the IAWPRC – specialized seminar on anaerobic treatment, CopenhagenGoogle Scholar
  90. McCarty PL (1982) In: Hughes DE, Stafford DA, Wheatley BI (eds) One hundred years of anaerobic treatment, Anaerobic digestion, 1981: Proceedings of the 2nd international symposium on anaerobic digestion. Elsevier Biomedical Press, Amsterdam, pp 3–22Google Scholar
  91. Monroy O, Johnson K, Wheatley A, Hawkes F, Caine M (1994) The anaerobic filtration of dairy waste: results of a pilot trial. Bioresour Technol 50(3):243–251Google Scholar
  92. Morgan PF, Blodgett JH (1954) Studies of accelerated digestion of sewage sludge. Sewage Ind Waste 26(4):462–478Google Scholar
  93. Morris JW, Jewell WJ (1981) Organic particulate removal with the anaerobic attached film expanded bed process. In: Proceedings of the 36th annual Purdue industrial waste conference, Lafayette, IN, pp 621–630Google Scholar
  94. Mudliar S, Giri B, Padoley K, Satpute D, Dixit R, Bhatt P, Pandey R, Juwarkar A, Vaidya A (2010) Bioreactors for treatment of VOCs and odours – A review. Journal of Environmental Manage­ment 91(5):1039–1054. doi:10.1016/j.jenvman.2010.01.006Google Scholar
  95. Murray WD, Van Den Berg L (1981) Effects of nickel, cobalt, and molybdenum on performance of methanogenic fixed-film reactors. Appl Environ Microbiol 42(3):502–505Google Scholar
  96. Mutombo DT (2004) Internal circulation reactor: pushing the limits of anaerobic industrial effluents treatment technologies. In: 2004 water institute of Southern Africa (WISA) biennial conference, Cape Town, South Africa, pp 608–616Google Scholar
  97. Ng WJ, Chin KK, Wong KK (1987) Energy yields from anaerobic digestion of palm oil mill effluent. Biol Wastes 19(4):257–266Google Scholar
  98. Nobre CA, Guimaraes MO (1987) Experimentos em digestão anaeróbia de esgotos urbanos. Revista DAE 47:75–85Google Scholar
  99. Norrman J (1982) Treatment of black liquor condensate from a pulp mill in an anaerobic filter and an expanded bed. In: International association of wastewater pollution. Research seminar on anaerobic treatment of wastewater in fixed film reactors, Copenhagen, pp 255–264Google Scholar
  100. O’Flaherty V, Collins G, Mahony T (2006) The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Rev Environ Sci Biotechnol 5(1):39–55. doi: 10.1007/s11157-005-5478-8 Google Scholar
  101. Ozturk I, Eroglu V, Ubay G, Demir I (1993) Hybrid upflow anaerobic sludge blanket reactor (HUASBR) treatment of dairy effluents. Water Sci Technol 28(2):77–85Google Scholar
  102. Palns S, Loewenthal RE, Wentzel M, Marais GR (1990) Growth of biopellets on glucose in upflow anaerobic sludge bed (UASB) systems. Water SA 16(3):151–164Google Scholar
  103. PAQUES (2011) Paques – BIOPAQ® UASB. PAQUES. http://www.paques.nl/?pid=43. Accessed 1 May 2011
  104. Peck MW, Hawkes FR (1987) Anaerobic digestion of cattle slurry in an upflow anaerobic filter. Biomass 13(2):125–133Google Scholar
  105. Peng D, Zhang X, Jin Q, Xiang L, Zhang D (1994) Effects of the seed sludge on the performance of UASB reactors for treatment of toxic wastewater. J Chem Technol Biotechnol 60(2):171–176Google Scholar
  106. Prasertsan P, Jung S, Buckle K (1994) Anaerobic filter treatment of fishery wastewater. World J Microbiol Biotechnol 10(1):11–13Google Scholar
  107. Rajamani S, Suthanthararajan R, Ravindranath E, Mulder A, van Groenestijn JW, Langerwerf JSA (1995) Treatment of tannery wastewater using upflow anaerobic sludge blanket system (UASB). In: 30th LERIG, Chennai, pp 57–66Google Scholar
  108. Ramakrishnan A, Gupta SK (2006) Anaerobic biogranulation in a hybrid reactor treating phenolic waste. J Hazard Mater 137(3):1488–1495Google Scholar
  109. Ramakrishnan A, Gupta SK (2008) Effect of hydraulic retention time on the biodegradation of complex phenolic mixture from simulated coal wastewater in hybrid UASB reactors. J Hazard Mater 153(1–2):843–851Google Scholar
  110. Ramasamy EV, Gajalakshmi S, Sanjeevi R, Jithesh MN, Abbasi SA (2004) Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors. Bioresour Technol 93(2):209–212. doi:10.1016/j.biortech.2003.11.001Google Scholar
  111. Rintala JA, Lepistö SS (1992) Anaerobic treatment of thermomechanical pulping whitewater at 35–70°C. Water Res 26(10):1297–1305Google Scholar
  112. Rinzema A, Schultz C (1987) Anaerobic treatment of acid water on a semi-technical scale. Department of Environmental Technology, Agricultural University Wageningen, The Netherlands (in Dutch)Google Scholar
  113. Rinzema A, Alphenaar A, Lettinga G (1993) Anaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors. Process Biochem 28(8):527–537Google Scholar
  114. Ripley LE, Totzke DE, Hwang IC (1988) Bench-scale evaluation of the anaerobic contact process for treating ice cream novelty wastewater, Proceedings of the 43rd industrial waste conference. Purdue University, West Lafayette, IN, pp 561–567Google Scholar
  115. Rozzi A, Passino R, Limoni M (1989) Anaerobic treatment of olive mill effluents in polyurethane foam bed reactors. Process Biochem 4:68–74Google Scholar
  116. Saravanan V, Sreekrishnan TR (2006) Modelling anaerobic biofilm reactors–A review. Journal of Environmental Management 81(1):1–18. doi:10.1016/j.jenvman.2005.10.002Google Scholar
  117. Sanjeevi R, Gajalakshmi S, Abbasi T, Abbasi SA, (2011) Treatment of low-strength shampoo industry wash waters with simultaneous recovery of clean energy using a new ‘rapid upflow granular anaerobic sludge’ (RUGAS) reactor, International Journal of Chemical and Environmental Engineering Systems 2(1):29–35Google Scholar
  118. Sayed SKI, Van der Spoel H, Truijen GJP (1993) A complete treatment of slaughterhouse wastewater combined with sludge stabilization using two stage high rate UASB process. Water Sci Technol 27(9):83–90Google Scholar
  119. Schellinkhout A, Jakma FFGM, Forero GE (1988) Sewage treatment: the anaerobic way is advancing in Columbia. In: 5th international symposium on anaerobic digestion, Bologna, Italy, pp 767–770Google Scholar
  120. Schroepfer GJ, Ziemke NR (1959a) Development of the anaerobic contact process. II. Ancillary Investigations and Specific Experiments. Sewage Ind Waste 31(6):697–711Google Scholar
  121. Schroepfer GJ, Ziemke NR (1959b) Development of the anaerobic contact process: I. Pilot-Plant investigations and economics. Sewage Ind Waste 31(2):164–190Google Scholar
  122. Schroepfer G, Fullen W, Johnson A, Ziemke N, Anderson J (1955) The anaerobic contact process as applied to packinghouse wastes. Sewage Ind Waste 27(4):460–486Google Scholar
  123. Sharma S, Ramakrishna C, Desai J, Bhatt N (1994) Anaerobic biodegradation of a petrochemical waste-water using biomass support particles. Appl Microbiol Biotechnol 40(5):768–771Google Scholar
  124. Sharma K, Liu H, Lau BLT, Li J, Yu T, Liu Y (2009) Biofilm fixed film systems. Water Environ Res 81(10):1194–1216. doi: 10.2175/106143009X12445568399532 Google Scholar
  125. Shen CF, Kosaric N, Blaszczyk R (1993) Properties of anaerobic granular sludge as affected by yeast extract, cobalt and iron supplements. Appl Microbiol Biotechnol 39(1):132–137Google Scholar
  126. Sorlini C, Ranalli G, Merlo S, Bonfanti P (1990) Microbiological aspects of anaerobic digestion of swine slurry in upflow fixed-bed digesters with different packing materials. Biol Wastes 31(3):231–239Google Scholar
  127. Soto M, Ruiz I, Fereiro MJ, Veiga MC, Vegae R (1995) Blázquez anaerobic treatment of domestic and industrial (Low concentrtation) wastewaters, Proceedings of the 3rd international conference appropriate waste management technologies for developing countries. NERRI, Nagpur, pp 3–11Google Scholar
  128. Steffen A (1961) Operation of full-scale anaerobic contact treatment plant for meatpacking wastes, Proceedings of the 16th industrial waste conference. Purdue University, USA, pp 423–437Google Scholar
  129. Stevens TG, van den Berg L (1982) Anaerobic treatment of food processing wastes using a fixed-film reactor. In: Proceedings of the 36th industrial waste conference, Lafeyette, IN, pp 224–232Google Scholar
  130. Sutton PM, Huss DA (1984) Anaerobic fluidized bed biological treatment: pilot to full-scale demonstration, Water pollution control federation conference. Water Pollution Control Federation, New Orleans, LouisianaGoogle Scholar
  131. Switzenbaum MS (1980) Anaerobic expanded-bed treatment of wastewater. In: US Department of Energy Workshop/Seminar of Anaerobic Filters, Howey-In-The-Hills, FLGoogle Scholar
  132. Switzenbaum MS (1983) A comparison of the anaerobic filter and the anaerobic expanded/fluidized bed processes. Water Sci Technol 15(8–9):345–358Google Scholar
  133. Szendrey L (1983a) The Bacardi corporation digestion process for stabilizing rum distillery wastes and producing methane, Energy from Biomass and Wastes VII. Institute of Gas Technology, Chicago, IL, pp 767–790Google Scholar
  134. Szendrey L (1983b) Start-up and operation of the Bacardi Corporation anaerobic filter. In: Proceedings of the 3rd international symposium on anaerobic digestion, Boston, pp 14–19Google Scholar
  135. Tandukar M, Ohashi A, Harada H (2007) Performance comparison of a pilot-scale UASB and DHS system and activated sludge process for the treatment of municipal wastewater. Water Res 41(12):2697–2705. doi: 10.1016/j.watres.2007.02.027 Google Scholar
  136. Tanemura K, Kida K (1994) Anaerobic treatment of wastewater with high salt content from a pickled-plum manufacturing process. J Ferment Bioeng 77(2):188–193Google Scholar
  137. Tawfik A, Ohashi A, Harada H (2006) Sewage treatment in a combined up-flow anaerobic sludge blanket (UASB)-down-flow hanging sponge (DHS) system. Biochem Eng J 29(3):210–219. doi: 10.1016/j.bej.2005.11.018 Google Scholar
  138. Tilche A, Bortone G, Forner G, Indulti M, Stante L, Tesini O (1994) Combination of anaerobic digestion and denitrification in a hybrid upflow anaerobic filter integrated in a nutrient removal treatment plant. Water Sci Technol 30(12):405–414Google Scholar
  139. Toldrá F, Flors A, Lequerica J, Vallés S (1986) Fluidized bed biomethanation of acetic acid. Appl Microbiol Biotechnol 23(5):336–341Google Scholar
  140. Torpey WN, Schlenz HE, Heukelekian H, King HR (1955) Loading to failure of a pilot high-rate digester. Sewage Ind Waste 27(2):121–148Google Scholar
  141. Uemura S, Harada H (1993) The effect of temperature on the performance of thermophilic UASB reactors. Environ Technol 14(9):897–900Google Scholar
  142. USEPA (1997a) Estimate of global greenhouse gas emissions from industrial and domestic wastewater treatment. United States Environmental Protection Agency, Office of Policy Planning and Evaluation, EPA-600/R-97-091, Washington, DCGoogle Scholar
  143. USEPA (1997b) Supplemental technical development document for effluent limitations guidelines and standards for the pulp, paper, and paperboard category. United States Environmental Protection Agency, Office of Water. EPA/821-R-97-011, Washington, DCGoogle Scholar
  144. USEPA (2006) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2020. U.S. Environmental Protection Agency. http://www.epa.gov/nonco2/econ-inv/international.html. Accessed 4 May 2011
  145. Van den Berg L (1984) Developments in methanogenesis from industrial wastewater. Can J Microbiol 30:975–990Google Scholar
  146. van den Berg L, Kennedy KJ (1981) Support materials for stationary fixed film reactors for high-rate methanogenic fermentations. Biotechnol Lett 3(4):165–170. doi: 10.1007/bf00239656 Google Scholar
  147. van den Berg L, Kennedy K (1982) Comparison of intermittent and continuous loading of stationary fixed-film reactors for methane production from wastes. J Chem Technol Biotechnol 32(2):427–432Google Scholar
  148. van den Berg L, Kennedy K (1983) Comparison of advanced anaerobic reactors. In: Proceedings of the 3rd international symposium on anaerobic digestion, Boston, pp 71–79Google Scholar
  149. van den Berg L, Lentz CP (1977) Methane production during treatment of food plant wastes by anaerobic digestion. In: Cornell agricultural wastes management conference, pp 381–393Google Scholar
  150. van den Berg L, Lentz C (1979) Developments in the design and operation of anaerobic fermenters, First Bioenergy R&D Seminar. National Research Council of Canada, OttawaGoogle Scholar
  151. van Den Berg L, Lentz C, Armstrong D (1981) Methane production rates of anaerobic fixed film fermentors as compared to those of anaerobic contact and fully mixed continuous fermentors. In: Moo-Young M, Robinson C (eds) Advances in biotechnology. Pergamon Press, NY, USA, pp 251–256Google Scholar
  152. Van Groenestijn J, Letitre P, Zhongbai G, Lucas M, Van Den Hark S (2004) Reduction of emissions from Chinese tanneries. Water 21:27–28Google Scholar
  153. Van Haandel A, Kato MT, Cavalcanti PFF, Florencio L (2006) Anaerobic reactor design concepts for the treatment of domestic wastewater. Rev Environ Sci Biotechnol 5(1):21–38. doi: 10.1007/s11157-005-4888-y Google Scholar
  154. van Velsen AFM (1979) Anaerobic digestion of piggery waste, 2: start-up procedure. Neth J Agric Sci 27:142–152Google Scholar
  155. Vandamme K, Waes G (1980) Anaerobic pretreatment of dairy wastewater. Antonie Van Leeuwenhoek 46(1):109–109Google Scholar
  156. Veiga MC, Mendez R, Lema JM (1994) Anaerobic filter and DSFF reactors in anaerobic treatment of tuna processing wastewater. Water Sci Technol 30(12):425–432Google Scholar
  157. Vieira S, Carvalho J, Barijan F, Rech C (1994) Application of the UASB technology for sewage treatment in a small community at Sumare, Sao Paulo State. Water Sci Technol 30(12):203–210Google Scholar
  158. Visser A, Beeksma I, Zee F, Stams A, Lettinga G (1993) Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Appl Microbiol Biotechnol 40(4):549–556Google Scholar
  159. Walfer M (2008) Training material on anaerobic wastewater treatment. Ecosan Expert Training Course, Version 3. Seecon gmbh, SwitzerlandGoogle Scholar
  160. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940. doi: 10.1016/j.biortech.2008.02.044 Google Scholar
  161. Wilkie A, Colleran E (1984) Start-up of anaerobic filters containing different support materials using pig slurry supernatant. Biotechnol Lett 6(11):735–740Google Scholar
  162. Wilkie A, Colleran E (1986) Pilot-scale digestion of pig slurry supernatant using an upflow anaerobic filter. Environ Technol 7(1):65–76Google Scholar
  163. Yoda M, Shin SW, Watanabe A, Watanabe M, Kitagawa M, Miyaji Y (1987) Anaerobic fluidized bed treatment with a steady-state biofilm. Water Sci Technol 19:287–298Google Scholar
  164. Young JC, Dahab MF (1983) Effect of media design on the performance of fixed-bed anaerobic reactors. Water Sci Technol 15(8–9):369–383Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centre for Pollution Control and Environmental EngineeringPondicherry UniversityKalapetIndia

Personalised recommendations