Systemic Treatment Options for Medical Device-Associated Infection

  • Oscar MurilloEmail author
  • Jaime Lora-Tamayo
  • Javier Ariza


Difficulties in eradicating medical device-related infections are primarily related to the presence of bacterial biofilms. The foreign body can often facilitate such infections, which may be usually caused by non-aggressive microorganisms with the ability to form biofilms even at low inoculum size.

The biofilm is responsible for several phenotypic changes in the bacteria including increased minimal bactericidal concentrations (tolerance to antibiotics). Other factors that have also been related to difficulties in the treatment of medical device-related infections are functional abnormalities in the activity of phagocytic cells in contact with the foreign body and the presence of intracellular bacteria.

While the anatomical location of the medical device can determine certain aspects of the treatment of these infections, this therapy must include an appropriate and lengthy antibiotic treatment combined with adequate surgical intervention. Antimicrobial therapy needs to be carefully designed, and the antibiotics to use against device-related infections can be chosen according both to their activity against bacterial biofilms and nongrowing microorganisms, and to their intracellular efficacy.

The specific characteristics of medical device-related infections, as well as the difficulties involved in their treatment, mean that multidisciplinary medical teams are required to ensure the optimal approach to and management of this pathology.


Prosthetic Valve Minimal Bactericidal Concentration Intracellular Bacterium Prosthetic Joint Infection Staphylococcal Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351(16):1645–54.CrossRefGoogle Scholar
  2. 2.
    Del Pozo JL, Patel R. Clinical practice Infection associated with prosthetic joints. N Engl J Med. 2009;361(8):787–94.CrossRefGoogle Scholar
  3. 3.
    Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358 (9276):135–8.CrossRefGoogle Scholar
  4. 4.
    Chuard C, Lucet JC, Rohner P, Herrmann M, Auckenthaler R, Waldvogel FA, Lew DP. Resistance of Staphylococcus aureus recovered from infected foreign body in vivo to killing by antimicrobials. J Infect Dis. 1991;163(6):1369–73.CrossRefGoogle Scholar
  5. 5.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.CrossRefGoogle Scholar
  6. 6.
    Zimmerli W, Lew PD, Waldvogel FA. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J Clin Invest. 1984;73(4):1191–200.CrossRefGoogle Scholar
  7. 7.
    Proctor RA, Balwit JM, Vesga O. Variant subpopulations of Staphylococcus aureus as cause of persistent and recurrent infections. Infect Agents Dis. 1994;3(6):302–12.Google Scholar
  8. 8.
    Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol. 2006;4(4):295–305.CrossRefGoogle Scholar
  9. 9.
    Boelens JJ, Dankert J, Murk JL, Weening JJ, van der Poll T, Dingemans KP, Koole L, Laman JD, Zaat SA. Biomaterial-associated persistence of Staphylococcus epidermidis in pericatheter macrophages. J Infect Dis. 2000;181(4):1337–49.CrossRefGoogle Scholar
  10. 10.
    Broekhuizen CA, de Boer L, Schipper K, Jones CD, Quadir S, Feldman RG, Dankert J, Vandenbroucke-Grauls CM, Weening JJ, Zaat SA. Peri-implant tissue is an important niche for Staphylococcus epidermidis in experimental biomaterial-associated infection in mice. Infect Immun. 2007;75(3):1129–36.CrossRefGoogle Scholar
  11. 11.
    Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–9.CrossRefGoogle Scholar
  12. 12.
    Costerton JW. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res. 2005;437:7–11.CrossRefGoogle Scholar
  13. 13.
    Widmer AF, Frei R, Rajacic Z, Zimmerli W. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis. 1990;162(1):96–102.CrossRefGoogle Scholar
  14. 14.
    Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA. 1998;279(19):1537–41.CrossRefGoogle Scholar
  15. 15.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.CrossRefGoogle Scholar
  16. 16.
    Gilbert P, Collier PJ, Brown MR. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother. 1990;34(10):1865–8.CrossRefGoogle Scholar
  17. 17.
    Anwar H, Dasgupta MK, Costerton JW. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother. 1990;34(11):2043–6.CrossRefGoogle Scholar
  18. 18.
    Blaser J, Vergeres P, Widmer AF, Zimmerli W. In vivo verification of in vitro model of antibiotic treatment of device-related infection. Antimicrob Agents Chemother. 1995;39(5):1134–9.CrossRefGoogle Scholar
  19. 19.
    Zimmerli W, Frei R, Widmer AF, Rajacic Z. Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J Antimicrob Chemother. 1994;33(5):959–67.CrossRefGoogle Scholar
  20. 20.
    Farber BF, Kaplan MH, Clogston AG. Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. J Infect Dis. 1990;161(1):37–40.CrossRefGoogle Scholar
  21. 21.
    Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010;65(9):1955–8.CrossRefGoogle Scholar
  22. 22.
    Murillo O, Domenech A, Garcia A, Tubau F, Cabellos C, Gudiol F, Ariza J. Efficacy of high doses of levofloxacin in experimental foreign-body infection by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50(12):4011–7.CrossRefGoogle Scholar
  23. 23.
    Murillo O, Pachon ME, Euba G, Verdaguer R, Carreras M, Cabellos C, Cabo J, Gudiol F, Ariza J. Intracellular antimicrobial activity appearing as a relevant factor in antibiotic efficacy against an experimental foreign-body infection caused by Staphylococcus aureus. J Antimicrob Chemother. 2009;64(5):1062–6.CrossRefGoogle Scholar
  24. 24.
    Ellington JK, Harris M, Hudson MC, Vishin S, Webb LX, Sherertz R. Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis. J Orthop Res. 2006;24(1):87–93.CrossRefGoogle Scholar
  25. 25.
    Gresham HD, Lowrance JH, Caver TE, Wilson BS, Cheung AL, Lindberg FP. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J Immunol. 2000;164(7):3713–22.Google Scholar
  26. 26.
    Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis. 2006;43(8):961–7.CrossRefGoogle Scholar
  27. 27.
    Maurin M, Raoult D. Intracellular organisms. Int J Antimicrob Agents. 1997;9(1):61–70.CrossRefGoogle Scholar
  28. 28.
    Barcia-Macay M, Seral C, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother. 2006;50(3):841–51.CrossRefGoogle Scholar
  29. 29.
    Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am. 2003;17(3):615–34.CrossRefGoogle Scholar
  30. 30.
    Gov Y, Bitler A, Dell’Acqua G, Torres JV, Balaban N. RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis. Peptides. 2001;22(10):1609–20.CrossRefGoogle Scholar
  31. 31.
    Balaban N, Giacometti A, Cirioni O, Gov Y, Ghiselli R, Mocchegiani F, Viticchi C, Del Prete MS, Saba V, Scalise G, Dell’Acqua G. Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. J Infect Dis. 2003;187(4):625–30.CrossRefGoogle Scholar
  32. 32.
    Balaban N, Goldkorn T, Gov Y, Hirshberg M, Koyfman N, Matthews HR, Nhan RT, Singh B, Uziel O. Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating protein (TRAP). J Biol Chem. 2001;276(4):2658–67.Google Scholar
  33. 33.
    Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein JB, Silvestri C, Mocchegiani F, Saba V, Scalise G. Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother. 2007;51(6):2226–9.CrossRefGoogle Scholar
  34. 34.
    Garrigos C, Murillo O, Euba G, et al. Study of the efficacy of RNA III inhibiting peptide (RIP) alone and in combination with vancomycin in an experimental foreign-body infection by methicillin-resistan Staphylococcus aureus. 50th International Conference on Antimicrobial Agents and Chemotherapy (ICAAC 2010); 2010 Sep 12–15; Boston: B-710Google Scholar
  35. 35.
    Yasuda H, Ajiki Y, Koga T, Yokota T. Interaction between clarithromycin and biofilms formed by Staphylococcus epidermidis. Antimicrob Agents Chemother. 1994;38(1):138–41.CrossRefGoogle Scholar
  36. 36.
    Parra-Ruiz J, Vidaillac C, Rose WE, Rybak MJ. Activities of high-dose daptomycin, vancomycin, and moxifloxacin alone or in combination with clarithromycin or rifampin in a novel in vitro model of Staphylococcus aureus biofilm. Antimicrob Agents Chemother. 2010;54(10):4329–34.CrossRefGoogle Scholar
  37. 37.
    Tsukayama DT, Estrada R, Gustilo RB. Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J Bone Joint Surg Am. 1996;78(4):512–23.Google Scholar
  38. 38.
    Widmer AF, Gaechter A, Ochsner PE, Zimmerli W. Antimicrobial treatment of orthopedic implant-related infections with rifampin combinations. Clin Infect Dis. 1992;14(6):1251–3.CrossRefGoogle Scholar
  39. 39.
    Drancourt M, Stein A, Argenson JN, Zannier A, Curvale G, Raoult D. Oral rifampin plus ofloxacin for treatment of Staphylococcus-infected orthopedic implants. Antimicrob Agents Chemother. 1993;37(6):1214–8.CrossRefGoogle Scholar
  40. 40.
    Bahl D, Miller DA, Leviton I, Gialanella P, Wolin MJ, Liu W, Perkins R, Miller MH. In vitro activities of ciprofloxacin and rifampin alone and in combination against growing and nongrowing strains of methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1997;41(6):1293–7.Google Scholar
  41. 41.
    Eng RH, Padberg FT, Smith SM, Tan EN, Cherubin CE. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother. 1991;35(9):1824–8.CrossRefGoogle Scholar
  42. 42.
    Murillo O, Pachon ME, Euba G, Verdaguer R, Tubau F, Cabellos C, Cabo J, Gudiol F, Ariza J. Antagonistic effect of rifampin on the efficacy of high-dose levofloxacin in staphylococcal experimental foreign-body infection. Antimicrob Agents Chemother. 2008;52(10):3681–6.CrossRefGoogle Scholar
  43. 43.
    Trampuz A, Murphy CK, Rothstein DM, Widmer AF, Landmann R, Zimmerli W. Efficacy of a novel rifamycin derivative, ABI-0043, against Staphylococcus aureus in an experimental model of foreign-body infection. Antimicrob Agents Chemother. 2007;51(7):2540–5.CrossRefGoogle Scholar
  44. 44.
    San Juan R, Garcia-Reyne A, Caba P, Chaves F, Resines C, Llanos F, Lopez-Medrano F, Lizasoain M, Aguado JM. Safety and efficacy of moxifloxacin monotherapy for treatment of orthopedic implant-related staphylococcal infections. Antimicrob Agents Chemother. 2010;54(12):5161–6.CrossRefGoogle Scholar
  45. 45.
    Vindel A, Cuevas O, Cercenado E, Marcos C, Bautista V, Castellares C, Trincado P, Boquete T, Perez-Vazquez M, Marin M, Bouza E. Methicillin-resistant Staphylococcus aureus in Spain: molecular epidemiology and utility of different typing methods. J Clin Microbiol. 2009;47(6):1620–7.CrossRefGoogle Scholar
  46. 46.
    Baldoni D, Haschke M, Rajacic Z, Zimmerli W, Trampuz A. Linezolid alone or combined with rifampin against methicillin-resistant Staphylococcus aureus in experimental foreign-body infection. Antimicrob Agents Chemother. 2009;53(3):1142–8.CrossRefGoogle Scholar
  47. 47.
    Murillo O, Garrigos C, Pachon ME, Euba G, Verdaguer R, Cabellos C, Cabo J, Gudiol F, Ariza J. Efficacy of high doses of daptomycin versus alternative therapies against experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(10):4252–7.CrossRefGoogle Scholar
  48. 48.
    Bassetti M, Di Biagio A, Cenderello G, Del Bono V, Palermo A, Cruciani M, Bassetti D. Linezolid treatment of prosthetic hip Infections due to methicillin-resistant Staphylococcus aureus (MRSA). J Infect. 2001;43(2):148–9.CrossRefGoogle Scholar
  49. 49.
    Bassetti M, Vitale F, Melica G, Righi E, Di Biagio A, Molfetta L, Pipino F, Cruciani M, Bassetti D. Linezolid in the treatment of Gram-positive prosthetic joint infections. J Antimicrob Chemother. 2005;55(3):387–90.CrossRefGoogle Scholar
  50. 50.
    Jover-Saenz A, Gaite FB, Ribelles AG, Porcel-Perez JM, Garrido-Calvo S. Linezolid treatment of total prosthetic knee infection due to methicillin-resistant Staphylococcus epidermidis. J Infect. 2003;47(1):87–8.CrossRefGoogle Scholar
  51. 51.
    Entenza JM, Moreillon P. Tigecycline in combination with other antimicrobials: a review of in vitro, animal and case report studies. Int J Antimicrob Agents. 2009;34(1):8.e1–9.CrossRefGoogle Scholar
  52. 52.
    Rodvold KA, Gotfried MH, Cwik M, Korth-Bradley JM, Dukart G, Ellis-Grosse EJ. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother. 2006;58(6):1221–9.CrossRefGoogle Scholar
  53. 53.
    Vaudaux P, Fleury B, Gjinovci A, Huggler E, Tangomo-Bento M, Lew DP. Comparison of tigecycline and vancomycin for treatment of experimental foreign-body infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(7):3150–2.CrossRefGoogle Scholar
  54. 54.
    Mascio CT, Alder JD, Silverman JA. Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother. 2007;51(12):4255–60.CrossRefGoogle Scholar
  55. 55.
    John AK, Baldoni D, Haschke M, Rentsch K, Schaerli P, Zimmerli W, Trampuz A. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother. 2009;53(7) :2719–24.CrossRefGoogle Scholar
  56. 56.
    Garrigos C, Murillo O, Euba G, Verdaguer R, Tubau F, Cabellos C, Cabo J, Ariza J. Efficacy of usual and high doses of daptomycin in combination with rifampin versus alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54(12):5251–6.CrossRefGoogle Scholar
  57. 57.
    Ariza J, Euba G, Murillo O. Orthopedic device-related infections. Enferm Infecc Microbiol Clin. 2008;26(6):380–90.CrossRefGoogle Scholar
  58. 58.
    Roberts JA, Paratz J, Paratz E, Krueger WA, Lipman J. Continuous infusion of beta-lactam antibiotics in severe infections: a review of its role. Int J Antimicrob Agents. 2007;30(1):11–8.CrossRefGoogle Scholar
  59. 59.
    Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005;40(9):1333–41.CrossRefGoogle Scholar
  60. 60.
    Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents. 2009;34(2):111–20.CrossRefGoogle Scholar
  61. 61.
    Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006;6(9):589–601.CrossRefGoogle Scholar
  62. 62.
    Meehan AM, Osmon DR, Duffy MC, Hanssen AD, Keating MR. Outcome of penicillin-susceptible streptococcal prosthetic joint infection treated with debridement and retention of the prosthesis. Clin Infect Dis. 2003;36(7):845–9.CrossRefGoogle Scholar
  63. 63.
    Euba G, Lora-Tamayo J, Murillo O, Pedrero S, Cabo J, Verdaguer R, Ariza J. Pilot study of ampicillin-ceftriaxone combination for treatment of orthopedic infections due to Enterococcus faecalis. Antimicrob Agents Chemother. 2009;53(10):4305–10.CrossRefGoogle Scholar
  64. 64.
    Ivert TS, Dismukes WE, Cobbs CG, Blackstone EH, Kirklin JW, Bergdahl LA. Prosthetic valve endocarditis. Circulation. 1984;69(2):223–32.CrossRefGoogle Scholar
  65. 65.
    Calderwood SB, Swinski LA, Waternaux CM, Karchmer AW, Buckley MJ. Risk factors for the development of prosthetic valve endocarditis. Circulation. 1985;72(1):31–7.CrossRefGoogle Scholar
  66. 66.
    Karchmer AW, Longworth DL. Infections of intracardiac devices. Infect Dis Clin North Am. 2002;16(2):477–505. Xii.CrossRefGoogle Scholar
  67. 67.
    Murdoch DR, Corey GR, Hoen B, Miro JM, Fowler Jr VG, Bayer AS, Karchmer AW, Olaison L, Pappas PA, Moreillon P, Chambers ST, Chu VH, Falco V, Holland DJ, Jones P, Klein JL, Raymond NJ, Read KM, Tripodi MF, Utili R, Wang A, Woods CW, Cabell CH. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med. 2009;169(5):463–73.CrossRefGoogle Scholar
  68. 68.
    Gandelman G, Frishman WH, Wiese C, Green-Gastwirth V, Hong S, Aronow WS, Horowitz HW. Intravascular device infections: epidemiology, diagnosis, and management. Cardiol Rev. 2007;15(1):13–23.CrossRefGoogle Scholar
  69. 69.
    Baddour LM, Wilson WR, Bayer AS, Fowler Jr VG, Bolger AF, Levison ME, Ferrieri P, Gerber MA, Tani LY, Gewitz MH, Tong DC, Steckelberg JM, Baltimore RS, Shulman ST, Burns JC, Falace DA, Newburger JW, Pallasch TJ, Takahashi M, Taubert KA. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005;111(23):e394–434.CrossRefGoogle Scholar
  70. 70.
    Horstkotte D, Follath F, Gutschik E, Lengyel M, Oto A, Pavie A, Soler-Soler J, Thiene G, von Graevenitz A, Priori SG, Garcia MA, Blanc JJ, Budaj A, Cowie M, Dean V, Deckers J, Fernandez Burgos E, Lekakis J, Lindahl B, Mazzotta G, Morais J, Smiseth OA, Vahanian A, Delahaye F, Parkhomenko A, Filipatos G, Aldershvile J, Vardas P. Guidelines on prevention, diagnosis and treatment of infective endocarditis executive summary; the task force on infective endocarditis of the European society of cardiology. Eur Heart J. 2004;25(3):267–76.CrossRefGoogle Scholar
  71. 71.
    Archer GL, Johnston JL, Vazquez GJ, Haywood 3rd HB. Efficacy of antibiotic combinations including rifampin against methicillin-resistant Staphylococcus epidermidis: in vitro and in vivo studies. Rev Infect Dis. 1983;5 Suppl 3:S538–42.CrossRefGoogle Scholar
  72. 72.
    Kobasa WD, Kaye KL, Shapiro T, Kaye D. Therapy for experimental endocarditis due to Staphylococcus epidermidis. Rev Infect Dis. 1983;5 Suppl 3:S533–7.CrossRefGoogle Scholar
  73. 73.
    Fowler Jr VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, Levine DP, Chambers HF, Tally FP, Vigliani GA, Cabell CH, Link AS, DeMeyer I, Filler SG, Zervos M, Cook P, Parsonnet J, Bernstein JM, Price CS, Forrest GN, Fatkenheuer G, Gareca M, Rehm SJ, Brodt HR, Tice A, Cosgrove SE. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–65.CrossRefGoogle Scholar
  74. 74.
    Marco F, de la Maria CG, Armero Y, Amat E, Soy D, Moreno A, del Rio A, Almela M, Mestres CA, Gatell JM, Jimenez de Anta MT, Miro JM. Daptomycin is effective in treatment of experimental endocarditis due to methicillin-resistant and glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2008;52(7):2538–43.CrossRefGoogle Scholar
  75. 75.
    Sakoulas G, Eliopoulos GM, Alder J, Eliopoulos CT. Efficacy of daptomycin in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(5):1714–8.CrossRefGoogle Scholar
  76. 76.
    Falagas ME, Giannopoulou KP, Ntziora F, Vardakas KZ. Daptomycin for endocarditis and/or bacteraemia: a systematic review of the experimental and clinical evidence. J Antimicrob Chemother. 2007;60(1):7–19.CrossRefGoogle Scholar
  77. 77.
    Falagas ME, Manta KG, Ntziora F, Vardakas KZ. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J Antimicrob Chemother. 2006;58(2):273–80.CrossRefGoogle Scholar
  78. 78.
    Miro JM, Del Rio A, Moreno A, et al. Efficacy and safety of fosfomycin plus imipenem for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) native valve endocarditis (NVE): preliminary results of a clinical trial. 48th International Conference on Antimicrobial Agents and Chemotherapy (ICAAC 2008); 2008 Oct 25–28; Washington, DC: L-1523Google Scholar
  79. 79.
    Sieradzki K, Tomasz A. Suppression of beta-lactam antibiotic resistance in a methicillin-resistant Staphylococcus aureus through synergic action of early cell wall inhibitors and some other antibiotics. J Antimicrob Chemother. 1997;39(Suppl A):47–51.CrossRefGoogle Scholar
  80. 80.
    Baddour LM, Bettmann MA, Bolger AF, Epstein AE, Ferrieri P, Gerber MA, Gewitz MH, Jacobs AK, Levison ME, Newburger JW, Pallasch TJ, Wilson WR, Baltimore RS, Falace DA, Shulman ST, Tani LY, Taubert KA. Nonvalvular cardiovascular device-related infections. Circulation. 2003;108(16):2015–31.CrossRefGoogle Scholar
  81. 81.
    Bracke FA, Meijer A, van Gelder LM. Pacemaker lead complications: when is extraction appropriate and what can we learn from published data? Heart. 2001;85(3):254–9.CrossRefGoogle Scholar
  82. 82.
    Reilly L. Aortic graft infection: evolution in management. Cardiovasc Surg. 2002;10(4):372–7.CrossRefGoogle Scholar
  83. 83.
    Kudva A, Hye RJ. Management of infectious and cutaneous complications in vascular access. Semin Vasc Surg. 1997;10(3):184–90.Google Scholar
  84. 84.
    Yeager RA, Taylor Jr LM, Moneta GL, Edwards JM, Nicoloff AD, McConnell DB, Porter JM. Improved results with conventional management of infrarenal aortic infection. J Vasc Surg. 1999;30(1):76–83.CrossRefGoogle Scholar
  85. 85.
    Martinez E, Rello J, Coll P. Clinical diagnosis of ventriculostomy-related infections. Lancet. 1994;344(8928):1015–6.CrossRefGoogle Scholar
  86. 86.
    Yogev R, Bisno A. Infections of central nervous system shunts. In: Waldvogel F, Bisno AL, editors. Infections associated with indwelling medical devices. 3rd ed. Washington, DC: ASM Press, 2000; 231–46.Google Scholar
  87. 87.
    Schreffler RT, Schreffler AJ, Wittler RR. Treatment of cerebrospinal fluid shunt infections: a decision analysis. Pediatr Infect Dis J. 2002;21(7):632–6.CrossRefGoogle Scholar
  88. 88.
    Pittet B, Montandon D, Pittet D. Infection in breast implants. Lancet Infect Dis. 2005;5(2): 94–106.Google Scholar
  89. 89.
    Gabriel SE, Woods JE, O’Fallon WM, Beard CM, Kurland LT, Melton 3rd LJ. Complications leading to surgery after breast implantation. N Engl J Med. 1997;336(10):677–82.CrossRefGoogle Scholar
  90. 90.
    Mulcahy JJ. Surgical management of penile prosthesis complications. Int J Impot Res. 2000;12 Suppl 4:S108–11.CrossRefGoogle Scholar
  91. 91.
    Wilson SK, Delk 2nd JR. Inflatable penile implant infection: predisposing factors and treatment suggestions. J Urol. 1995;153(3 Pt 1):659–61.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Oscar Murillo
    • 1
    Email author
  • Jaime Lora-Tamayo
    • 1
  • Javier Ariza
    • 1
  1. 1.Department of Infectious Diseases, IDIBELLHospital Universitari BellvitgeBarcelonaSpain

Personalised recommendations