Biomaterial-Dependent Characteristics of the Foreign Body Response and S. epidermidis Biofilm Interactions

  • James M. Anderson
  • Jasmine D. Patel


This chapter presents our efforts to develop a better mechanistic understanding of how biomaterial interactions with blood components lead to alteration of the basic pathophysiologic mechanisms, in particular, inflammation and the foreign body response, which increase the probability of bacterial interactions, colonization, biofilm formation, and infection. In particular, we present perspectives on mechanisms of S. epidermidis biofilm formation, the role of surface chemistry on biofilm formation, the role of bacterial slime production in device infections, the apoptosis of adherent polymorphonuclear leukocytes in the acute inflammatory response, neutrophil mobility and phagocytosis of bacteria on biomaterials, generation of reactive oxygen and nitrogen species by biomaterial-adherent neutrophils, and quorum sensing in S. epidermidis biofilm formation. Our work has focused on infection mechanisms of cardiovascular prostheses and devices where blood hemodynamics and shear stress play important roles in inflammatory cell interactions with biomaterial surfaces. However, we believe that much of our results also are applicable to static implant situations found in orthopedic, cosmetic (plastic), and other surgical areas.


Nitric Oxide Nitric Oxide Synthases Bacterial Adhesion Foreign Body Giant Cell Biomaterial Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Accumulation-associated protein


Accessory gene regulator


Staphylococcal adhesin


n-Butyl methacrylate


Inactive complement component C3b, iC3b


Constitutive nitric oxide synthetase


Platelet factor, PF-4


Deoxyribonucleic acid


Endothelial nitric oxide synthetase


Extracellular-signal-related kinase


Focal adhesion kinase


Fibrinogen-binding protein


















Interferon gamma


Inducible nitric oxide synthetase


NG-methyl-l-arginine, acetate salt




Accessory gene regulator


ω-Methylacryloyloxyalkyl phosphorylcholine


Monocyte chemotactic protein-1


Macrophage inflammatory protein-1


Nicotinamide adenine dinucleotide phosphate


Nitric oxide


Nitric oxide synthetase




Superoxide anion


Platelet-derived growth factor


Polyethylene oxide


Polysaccharide intercellular adhesin


Phorbal myristate acetate


Polymorphonuclear leukocyte




Regulated upon activation, normal T-cell cytokine


Reactive oxygen intermediate


Self-assembled monolayer


Fibrinogen-binding protein


Surface modifying end-groups


Transforming growth factor-beta


Tumor necrosis factor-alpha



This review was supported in part by Award Number EB000279 from the National Institute of Biomedical Imaging and Bioengineering.


  1. 1.
    Anderson JM. Multinucleated giant cells. Curr Opin Hematol. 2000;7(1):40–7.Google Scholar
  2. 2.
    Anderson JM. Biological responses to materials. Ann Rev Mater Res. 2001;31:81–110.Google Scholar
  3. 3.
    Gretzer C, Emanuelsson L, Liljensten E, Thomsen P. The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. J Biomater Sci Polym Ed. 2006;17(6):669–87.Google Scholar
  4. 4.
    Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 2006;12(7):1955–70.Google Scholar
  5. 5.
    Horbett T. The role of adsorbed proteins in tissue response to biomaterials. In: Ratner B et al., editors. Biomaterials science: an introduction to biomaterials in medicine. San Diego: Elsevier Academic Press; 2004. p. 237–46.Google Scholar
  6. 6.
    Zdolsek J, Eaton JW, Tang L. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans. J Transl Med. 2007;5:31.Google Scholar
  7. 7.
    Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA. 1998;95(15):8841–6.Google Scholar
  8. 8.
    Keegan AD. IL-4. In: Oppenheim JJ, Feldman M, editors. Cytokine reference, vol. 1. San Diego: Academic; 2001.Google Scholar
  9. 9.
    McKenzie ANJ, Matthews DJ. IL-13. In: Oppenheim JJ, Feldman M, editors. Cytokine reference, vol. 1. San Diego: Academic; 2001.Google Scholar
  10. 10.
    Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1–2):1–18.Google Scholar
  11. 11.
    Jenney CR, Anderson JM. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res. 2000;49(4):435–47.Google Scholar
  12. 12.
    Brodbeck WG, Colton E, Anderson JM. Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. J Mater Sci Mater Med. 2003;14(8):671–5.Google Scholar
  13. 13.
    Jenney CR, Anderson JM. Adsorbed IgG: a potent adhesive substrate for human macrophages. J Biomed Mater Res. 2000;50(3):281–90.Google Scholar
  14. 14.
    Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231–8.Google Scholar
  15. 15.
    Xu LC, Siedlecki CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials. 2007;28(22):3273–83.Google Scholar
  16. 16.
    Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Mol Immunol. 2007;44(1–3):82–94.Google Scholar
  17. 17.
    Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25(26):5681–703.Google Scholar
  18. 18.
    Broughton 2nd G, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg. 2006;117(7 Suppl):12S–34S.Google Scholar
  19. 19.
    Delon I, Brown NH. Integrins and the actin cytoskeleton. Curr Opin Cell Biol. 2007;19(1):43–50.Google Scholar
  20. 20.
    Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–32.Google Scholar
  21. 21.
    Berton G, Lowell CA. Integrin signalling in neutrophils and macrophages. Cell Signal. 1999;11(9):621–35.Google Scholar
  22. 22.
    McNally AK, Anderson JM. Complement C3 participation in monocyte adhesion to different surfaces. Proc Natl Acad Sci USA. 1994;91(21):10119–23.Google Scholar
  23. 23.
    McNally AK, Anderson JM. Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am J Pathol. 2002;160(2):621–30.Google Scholar
  24. 24.
    McNally AK, Macewan SR, Anderson JM. Alpha subunit partners to beta1 and beta2 integrins during IL-4-induced foreign body giant cell formation. J Biomed Mater Res A. 2007;82(3):568–74.Google Scholar
  25. 25.
    Lee MH, Ducheyne P, Lynch L, Boettiger D, Composto RJ. Effect of biomaterial surface properties on fibronectin-alpha5beta1 integrin interaction and cellular attachment. Biomaterials. 2006;27(9):1907–16.Google Scholar
  26. 26.
    Lan MA, Gersbach CA, Michael KE, Keselowsky BG, Garcia AJ. Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials. 2005;26(22):4523–31.Google Scholar
  27. 27.
    Keselowsky BG, Collard DM, Garcia AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA. 2005;102(17):5953–7.Google Scholar
  28. 28.
    Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A. 2003;66(2):247–59.Google Scholar
  29. 29.
    Allen LT, Tosetto M, Miller IS, O’Connor DP, Penney SC, Lynch I, Keenan AK, Pennington SR, Dawson KA, Gallagher WM. Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials. 2006;27(16):3096–108.Google Scholar
  30. 30.
    Garcia AJ, Boettiger D. Integrin-fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials. 1999;20(23–24):2427–33.Google Scholar
  31. 31.
    Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials. 2004;25(28):5947–54.Google Scholar
  32. 32.
    Damsky CH, Ilic D. Integrin signaling: it’s where the action is. Curr Opin Cell Biol. 2002;14(5):594–602.Google Scholar
  33. 33.
    Reddig PJ, Juliano RL. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 2005;24(3):425–39.Google Scholar
  34. 34.
    Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13(5):555–62.Google Scholar
  35. 35.
    Brodbeck WG, Shive MS, Colton E, Nakayama Y, Matsuda T, Anderson JM. Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J Biomed Mater Res. 2001;55(4):661–8.Google Scholar
  36. 36.
    Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda T, Ziats NP, Anderson JM. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Natl Acad Sci USA. 2002;99(16):10287–92.Google Scholar
  37. 37.
    Jones JA, Dadsetan M, Collier TO, Ebert M, Stokes KS, Ward RS, Hiltner PA, Anderson JM. Macrophage behavior on surface-modified polyurethanes. J Biomater Sci Polym Ed. 2004;15(5):567–84.Google Scholar
  38. 38.
    Shive MS, Brodbeck WG, Anderson JM. Activation of caspase 3 during shear stress-induced neutrophil apoptosis on biomaterials. J Biomed Mater Res. 2002;62(2):163–8.Google Scholar
  39. 39.
    Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6.Google Scholar
  40. 40.
    Miller KM, Anderson JM. Human monocyte/macrophage activation and interleukin 1 generation by biomedical polymers. J Biomed Mater Res. 1988;22(8):713–31.Google Scholar
  41. 41.
    Miller KM, Huskey RA, Bigby LF, Anderson JM. Characterization of biomedical polymer-adherent macrophages: interleukin 1 generation and scanning electron microscopy studies. Biomaterials. 1989;10(3):187–96.Google Scholar
  42. 42.
    Bonfield TL, Colton E, Anderson JM. Plasma protein adsorbed biomedical polymers: activation of human monocytes and induction of interleukin 1. J Biomed Mater Res. 1989;23(6):535–48.Google Scholar
  43. 43.
    Bonfield TL, Colton E, Marchant RE, Anderson JM. Cytokine and growth factor production by monocytes/macrophages on protein preadsorbed polymers. J Biomed Mater Res. 1992;26(7):837–50.Google Scholar
  44. 44.
    Krause TJ, Robertson FM, Liesch JB, Wasserman AJ, Greco RS. Differential production of interleukin 1 on the surface of biomaterials. Arch Surg. 1990;125(9):1158–60.Google Scholar
  45. 45.
    Hwang JJ, Jelacic S, Samuel NT, Maier RV, Campbell CT, Castner DG, Hoffman AS, Stayton PS. Monocyte activation on polyelectrolyte multilayers. J Biomater Sci Polym Ed. 2005;16(2):237–51.Google Scholar
  46. 46.
    Ma N, Petit A, Yahia L, Huk OL, Tabrizian M. Cytotoxic reaction and TNF-alpha response of macrophages to polyurethane particles. J Biomater Sci Polym Ed. 2002;13(3):257–72.Google Scholar
  47. 47.
    Bonfield TL, Anderson JM. Functional versus quantitative comparison of IL-1 beta from monocytes/macrophages on biomedical polymers. J Biomed Mater Res. 1993;27(9):1195–9.Google Scholar
  48. 48.
    McNally AK, Anderson JM. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am J Pathol. 1995;147(5):1487–99.Google Scholar
  49. 49.
    Wagner VE, Bryers JD. Monocyte/macrophage interactions with base and linear- and star-like PEG-modified PEG-poly(acrylic acid) co-polymers. J Biomed Mater Res A. 2003;66(1):62–78.Google Scholar
  50. 50.
    Yun JK, DeFife K, Colton E, Stack S, Azeez A, Cahalan L, Verhoeven M, Cahalan P, Anderson JM. Human monocyte/macrophage adhesion and cytokine production on surface-modified poly(tetrafluoroethylene/hexafluoropropylene) polymers with and without protein preadsorption. J Biomed Mater Res. 1995;29(2):257–68.Google Scholar
  51. 51.
    DeFife KM, Yun JK, Azeez A, Stack S, Ishihara K, Nakabayashi N, Colton E, Anderson JM. Adhesion and cytokine production by monocytes on poly(2-methacryloyloxyethyl phosphorylcholine-co-alkyl methacrylate)-coated polymers. J Biomed Mater Res. 1995;29(4):431–9.Google Scholar
  52. 52.
    Marques AP, Reis RL, Hunt JA. Cytokine secretion from mononuclear cells cultured in vitro with starch-based polymers and poly-L-lactide. J Biomed Mater Res A. 2004;71(3):419–29.Google Scholar
  53. 53.
    Xing S, Santerre J, Labow RS, Boynton EL. Differential response to chemically altered polyethylene by activated mature human monocyte-derived macrophages. Biomaterials. 2002;23(17):3595–602.Google Scholar
  54. 54.
    Sethi RK, Neavyn MJ, Rubash HE, Shanbhag AS. Macrophage response to cross-linked and conventional UHMWPE. Biomaterials. 2003;24(15):2561–73.Google Scholar
  55. 55.
    Gretzer C, Gisselfalt K, Liljensten E, Ryden L, Thomsen P. Adhesion, apoptosis and cytokine release of human mononuclear cells cultured on degradable poly(urethane urea), polystyrene and titanium in vitro. Biomaterials. 2003;24(17):2843–52.Google Scholar
  56. 56.
    Refai AK, Textor M, Brunette DM, Waterfield JD. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A. 2004;70(2):194–205.Google Scholar
  57. 57.
    Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73(2):209–12.Google Scholar
  58. 58.
    Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–92.Google Scholar
  59. 59.
    Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.Google Scholar
  60. 60.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.Google Scholar
  61. 61.
    McNally AK, DeFife KM, Anderson JM. Interleukin-4-induced macrophage fusion is prevented by inhibitors of mannose receptor activity. Am J Pathol. 1996;149(3):975–85.Google Scholar
  62. 62.
    Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T, Anderson JM. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A. 2007;83(3):585–96.Google Scholar
  63. 63.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.Google Scholar
  64. 64.
    Gristina AGG, Myrvik QN. Bacteria and biomaterials. In: Greco RS, editor. Implant biology. New Brunswick: CRC Press; 1994. p. 131–48.Google Scholar
  65. 65.
    Bos R, van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiol Rev. 1999;23(2):179–230.Google Scholar
  66. 66.
    Dickinson GM, Bisno AL. Infections associated with indwelling devices: concepts of pathogenesis; infections associated with intravascular devices. Antimicrob Agents Chemother. 1989;33(5):597–601.Google Scholar
  67. 67.
    Herrmann M, Vaudaux PE, Pittet D, Auckenthaler R, Lew PD, Schumacher-Perdreau F, Peters G, Waldvogel FA. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis. 1988;158(4):693–701.Google Scholar
  68. 68.
    Vaudaux P, Pittet D, Haeberli A, Huggler E, Nydegger UE, Lew DP, Waldvogel FA. Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis. 1989;160(5):865–75.Google Scholar
  69. 69.
    Galliani S, Viot M, Cremieux A, Van der Auwera P. Early adhesion of bacteremic strains of Staphylococcus epidermidis to polystyrene: influence of hydrophobicity, slime production, plasma, albumin, fibrinogen, and fibronectin. J Lab Clin Med. 1994;123(5):685–92.Google Scholar
  70. 70.
    Pascual A, Fleer A, Westerdaal NA, Verhoef J. Modulation of adherence of coagulase-negative staphylococci to Teflon catheters in vitro. Eur J Clin Microbiol. 1986;5(5):518–22.Google Scholar
  71. 71.
    Patel JD, Iwasaki Y, Ishihara K, Anderson JM. Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions. J Biomed Mater Res A. 2005;73(3):359–66.Google Scholar
  72. 72.
    Patel JD, Ebert M, Stokes K, Ward R, Anderson JM. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry. J Biomater Sci Polym Ed. 2003;14(3):279–95.Google Scholar
  73. 73.
    MacKintosh EE, Patel JD, Marchant RE, Anderson JM. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. J Biomed Mater Res A. 2006;78(4):836–42.Google Scholar
  74. 74.
    Wang IW, Anderson JM, Marchant RE. Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets. J Infect Dis. 1993;167(2):329–36.Google Scholar
  75. 75.
    Sapatnekar S, Kieswetter KM, Merritt K, Anderson JM, Cahalan L, Verhoeven M, Hendriks M, Fouache B, Cahalan P. Blood-biomaterial interactions in a flow system in the presence of bacteria: effect of protein adsorption. J Biomed Mater Res. 1995;29(2):247–56.Google Scholar
  76. 76.
    Shive MS, Hasan SM, Anderson JM. Shear stress effects on bacterial adhesion, leukocyte adhesion, and leukocyte oxidative capacity on a polyetherurethane. J Biomed Mater Res. 1999;46(4):511–9.Google Scholar
  77. 77.
    Li DQ, Lundberg F, Ljungh A. Characterization of vitronectin-binding proteins of Staphylococcus epidermidis. Curr Microbiol. 2001;42(5):361–7.Google Scholar
  78. 78.
    Heilmann C, Hussain M, Peters G, Gotz F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol. 1997;24(5):1013–24.Google Scholar
  79. 79.
    Shinji H, Sakurada J, Seki K, Murai M, Masuda S. Different effects of fibronectin on the phagocytosis of Staphylococcus aureus and coagulase-negative staphylococci by murine peritoneal macrophages. Microbiol Immunol. 1998;42(12):851–61.Google Scholar
  80. 80.
    Minhas T, Ludlam HA, Wilks M, Tabaqchali S. Detection by PCR and analysis of the distribution of a fibronectin-binding protein gene (fbn) among staphylococcal isolates. J Med Microbiol. 1995;42(2):96–101.Google Scholar
  81. 81.
    Williams RJ, Henderson B, Sharp LJ, Nair SP. Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infect Immun. 2002;70(12):6805–10.Google Scholar
  82. 82.
    Hussain M, Wilcox MH, White PJ. The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiol Rev. 1993;10(3–4):191–207.Google Scholar
  83. 83.
    Hussain M, Heilmann C, Peters G, Herrmann M. Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microb Pathog. 2001;31(6):261–70.Google Scholar
  84. 84.
    Li DQ, Lundberg F, Ljungh A. Binding of von Willebrand factor by coagulase-negative staphylococci. J Med Microbiol. 2000;49(3):217–25.Google Scholar
  85. 85.
    Nilsson M, Frykberg L, Flock JI, Pei L, Lindberg M, Guss B. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect Immun. 1998;66(6):2666–73.Google Scholar
  86. 86.
    Davis SL, Gurusiddappa S, McCrea KW, Perkins S, Hook M. SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bbeta chain. J Biol Chem. 2001;276(30):27799–805.Google Scholar
  87. 87.
    Hartford O, O’Brien L, Schofield K, Wells J, Foster TJ. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology. 2001;147(Pt 9):2545–52.Google Scholar
  88. 88.
    Pei L, Palma M, Nilsson M, Guss B, Flock JI. Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis. Infect Immun. 1999;67(9):4525–30.Google Scholar
  89. 89.
    Patel JD, Ebert M, Ward R, Anderson JM. S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins. J Biomed Mater Res A. 2007;80(3):742–51.Google Scholar
  90. 90.
    Rupp ME, Fey PD, Heilmann C, Gotz F. Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis. 2001;183(7):1038–42.Google Scholar
  91. 91.
    Veenstra GJ, Cremers FF, van Dijk H, Fleer A. Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. J Bacteriol. 1996;178(2):537–41.Google Scholar
  92. 92.
    Patel JD, Colton E, Ebert M, Anderson JM. Gene expression during S. epidermidis biofilm formation on biomaterials. J Biomed Mater Res A. 2012. doi: 10.1002/jbm.w.34221.Google Scholar
  93. 93.
    Muller E, Takeda S, Shiro H, Goldmann D, Pier GB. Occurrence of capsular polysaccharide/adhesin among clinical isolates of coagulase-negative staphylococci. J Infect Dis. 1993;168(5):1211–8.Google Scholar
  94. 94.
    Heilmann C, Gerke C, Perdreau-Remington F, Gotz F. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun. 1996;64(1):277–82.Google Scholar
  95. 95.
    Mack D, Haeder M, Siemssen N, Laufs R. Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J Infect Dis. 1996;174(4):881–4.Google Scholar
  96. 96.
    Mack D, Nedelmann M, Krokotsch A, Schwarzkopf A, Heesemann J, Laufs R. Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect Immun. 1994;62(8):3244–53.Google Scholar
  97. 97.
    Mack D, Siemssen N, Laufs R. Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun. 1992;60(5):2048–57.Google Scholar
  98. 98.
    McCrea KW, Hartford O, Davis S, Eidhin DN, Lina G, Speziale P, Foster TJ, Hook M. The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology. 2000;146(Pt 7):1535–46.Google Scholar
  99. 99.
    Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1, 6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol. 1996;178(1):175–83.Google Scholar
  100. 100.
    Gerke C, Kraft A, Sussmuth R, Schweitzer O, Gotz F. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem. 1998;273(29):18586–93.Google Scholar
  101. 101.
    Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996;20(5):1083–91.Google Scholar
  102. 102.
    Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem. 2004;279(52):54881–6.Google Scholar
  103. 103.
    Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, Peters G. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun. 1997;65(2):519–24.Google Scholar
  104. 104.
    Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK, Heilmann C, Herrmann M, Mack D. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol. 2005;55(6):1883–95.Google Scholar
  105. 105.
    Desai NP, Hossainy SF, Hubbell JA. Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials. 1992;13(7):417–20.Google Scholar
  106. 106.
    Desai NP, Hubbell JA. Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J Biomed Mater Res. 1991;25(7):829–43.Google Scholar
  107. 107.
    White KA, Gill RS, Lim F, Coviello S. (1996). In: Ratner B, et al. (ed) Surface Modification of Polymeric Biomaterials. Plenum Press, New York, 155.Google Scholar
  108. 108.
    Hayward JA, Chapman D. Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials. 1984;5(3):135–42.Google Scholar
  109. 109.
    Iwasaki Y, Kurita K, Ishihara K, Nakabayashi N. Effect of reduced protein adsorption on platelet adhesion at the phospholipid polymer surfaces. J Biomater Sci Polym Ed. 1996;8(2):151–63.Google Scholar
  110. 110.
    Iwasaki Y, Mikami A, Kurita K, Yui N, Ishihara K, Nakabayashi N. Reduction of surface-induced platelet activation on phospholipid polymer. J Biomed Mater Res. 1997;36(4):508–15.Google Scholar
  111. 111.
    Sawada S, Sakaki S, Iwasaki Y, Nakabayashi N, Ishihara K. Suppression of the inflammatory response from adherent cells on phospholipid polymers. J Biomed Mater Res A. 2003;64(3):411–6.Google Scholar
  112. 112.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.Google Scholar
  113. 113.
    Kojima M, Ishihara K, Watanabe A, Nakabayashi N. Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety. Biomaterials. 1991;12(2):121–4.Google Scholar
  114. 114.
    Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J Biomed Mater Res. 1992;26(12):1543–52.Google Scholar
  115. 115.
    Ueda T, Watanabe A, Ishihara K, Nakabayashi N. Protein adsorption on biomedical polymers with a phosphorylcholine moiety adsorbed with phospholipid. J Biomater Sci Polym Ed. 1991;3(2):185–94.Google Scholar
  116. 116.
    Ishihara K, Ziats NP, Tierney BP, Nakabayashi N, Anderson JM. Protein adsorption from human plasma is reduced on phospholipid polymers. J Biomed Mater Res. 1991;25(11):1397–407.Google Scholar
  117. 117.
    Rozalska B, Ljungh A. Biomaterial-associated staphylococcal peritoneal infections in a neutropaenic mouse model. FEMS Immunol Med Microbiol. 1995;11(4):307–19.Google Scholar
  118. 118.
    Hermann MPG. Catheter-associated infections caused by coagulase-negative staphylococci: clinical and biological aspects. In: Seifert H, Jansen B, Farr BM, editors. Catheter-related infections. New York: Marcel Dekker; 1997. p. 79–109.Google Scholar
  119. 119.
    Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol. 2004;6(3):269–75.Google Scholar
  120. 120.
    Johnson GM, Lee DA, Regelmann WE, Gray ED, Peters G, Quie PG. Interference with granulocyte function by Staphylococcus epidermidis slime. Infect Immun. 1986;54(1):13–20.Google Scholar
  121. 121.
    Dunne Jr WM. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002;15(2):155–66.Google Scholar
  122. 122.
    Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri S. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun. 2005;73(5):3007–17.Google Scholar
  123. 123.
    von Eiff C, Heilmann C, Peters G. New aspects in the molecular basis of polymer-associated infections due to staphylococci. Eur J Clin Microbiol Infect Dis. 1999;18(12):843–6.Google Scholar
  124. 124.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.Google Scholar
  125. 125.
    Khardori N, Yassien M, Wilson K. Tolerance of Staphylococcus epidermidis grown from indwelling vascular catheters to antimicrobial agents. J Ind Microbiol. 1995;15(3):148–51.Google Scholar
  126. 126.
    Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002;292(2):107–13.Google Scholar
  127. 127.
    Henriques M, Cerca N, Azeredo J, Oliveira R. Influence of sub-inhibitory concentrations of antimicrobial agents on biofilm formation in indwelling medical devices. Int J Artif Organs. 2005;28(11):1181–5.Google Scholar
  128. 128.
    Shive MS, Brodbeck WG, Colton E, Anderson JM. Shear stress and material surface effects on adherent human monocyte apoptosis. J Biomed Mater Res. 2002;60(1):148–58.Google Scholar
  129. 129.
    Shive MS, Salloum ML, Anderson JM. Shear stress-induced apoptosis of adherent neutrophils: a mechanism for persistence of cardiovascular device infections. Proc Natl Acad Sci USA. 2000;97(12):6710–5.Google Scholar
  130. 130.
    Zhou Y, Doerschuk CM, Anderson JM, Marchant RE. Biomaterial surface-dependent neutrophil mobility. J Biomed Mater Res A. 2004;69(4):611–20.Google Scholar
  131. 131.
    Hallett MB. Controlling the molecular motor of neutrophil chemotaxis. Bioessays. 1997;19(7):615–21.Google Scholar
  132. 132.
    Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84(3):359–69.Google Scholar
  133. 133.
    Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature. 1997;385(6616):537–40.Google Scholar
  134. 134.
    Wessels D, Vawter-Hugart H, Murray J, Soll DR. Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium. Cell Motil Cytoskeleton. 1994;27(1):1–12.Google Scholar
  135. 135.
    Slack SM, Horbett TA. The Vroman effect: a critical review. In: Horbett TA, Brash J, editors. Proteins at interfaces II: fundamentals and applications. Washington, DC: American Chemical Society; 1995. p. 112–28.Google Scholar
  136. 136.
    Edwards S. Biochemistry and physiology of the neutrophils. New York: Cambridge University Press; 1994.Google Scholar
  137. 137.
    Evans TG, Thai L, Granger DL, Hibbs Jr JB. Effect of in vivo inhibition of nitric oxide production in murine leishmaniasis. J Immunol. 1993;151(2):907–15.Google Scholar
  138. 138.
    Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, Peitzman AB. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg. 1991;214(5):621–6.Google Scholar
  139. 139.
    Stenger S, Donhauser N, Thuring H, Rollinghoff M, Bogdan C. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J Exp Med. 1996;183(4):1501–14.Google Scholar
  140. 140.
    MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA. 1997;94(10):5243–8.Google Scholar
  141. 141.
    Johnston Jr RB, Lehmeyer JE. Elaboration of toxic oxygen by-products by neutrophils in a model of immune complex disease. J Clin Invest. 1976;57(4):836–41.Google Scholar
  142. 142.
    Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA. 1997;94(13):6954–8.Google Scholar
  143. 143.
    Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, Arnelle DR, Hollis D, McDonald MI, Granger DL. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med. 1996;184(2):557–67.Google Scholar
  144. 144.
    Langrehr JM, Hoffman RA, Billiar TR, Lee KW, Schraut WH, Simmons RL. Nitric oxide production regulates alloactivation in rat splenocyte mixed lymphocyte cultures. Transplant Proc. 1991;23(1 Pt 1):183–4.Google Scholar
  145. 145.
    Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999;1411(2–3):217–30.Google Scholar
  146. 146.
    Ou J, Carlos TM, Watkins SC, Saavedra JE, Keefer LK, Kim YM, Harbrecht BG, Billiar TR. Differential effects of nonselective nitric oxide synthase (NOS) and selective inducible NOS inhibition on hepatic necrosis, apoptosis, ICAM-1 expression, and neutrophil accumulation during endotoxemia. Nitric Oxide. 1997;1(5):404–16.Google Scholar
  147. 147.
    Ye YZ, Strong M, Huang ZQ, Beckman JS. Antibodies that recognize nitrotyrosine. Methods Enzymol. 1996;269:201–9.Google Scholar
  148. 148.
    Giridhar G, Myrvik QN, Gristina AG. Biomaterial-induced dysfunction in the capacity of rabbit alveolar macrophages to kill Staphylococcus epidermidis RP12. J Biomed Mater Res. 1995;29(10):1179–83.Google Scholar
  149. 149.
    Kaplan SS, Basford RE, Mora E, Jeong MH, Simmons RL. Biomaterial-induced alterations of neutrophil superoxide production. J Biomed Mater Res. 1992;26(8):1039–51.Google Scholar
  150. 150.
    Hoffstein ST, Gennaro DE, Manzi RM. Surface contact inhibits neutrophil superoxide generation induced by soluble stimuli. Lab Invest. 1985;52(5):515–22.Google Scholar
  151. 151.
    Patel JD, Krupka T, Anderson JM. iNOS-mediated generation of reactive oxygen and nitrogen species by biomaterial-adherent neutrophils. J Biomed Mater Res A. 2007;80(2):381–90.Google Scholar
  152. 152.
    Kong KF, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol. 2006;296(2–3):133–9.Google Scholar
  153. 153.
    Otto M, Sussmuth R, Jung G, Gotz F. Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett. 1998;424(1–2):89–94.Google Scholar
  154. 154.
    Vuong C, Gotz F, Otto M. Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect Immun. 2000;68(3):1048–53.Google Scholar
  155. 155.
    Otto M. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides. 2001;22(10):1603–8.Google Scholar
  156. 156.
    Otto M. Quorum-sensing control in Staphylococci – a target for antimicrobial drug therapy? FEMS Microbiol Lett. 2004;241(2):135–41.Google Scholar
  157. 157.
    Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol. 2003;48(6):1429–49.Google Scholar
  158. 158.
    Vuong C, Saenz HL, Gotz F, Otto M. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis. 2000;182(6):1688–93.Google Scholar
  159. 159.
    Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol. 2004;186(6):1838–50.Google Scholar
  160. 160.
    Yao Y, Sturdevant DE, Otto M. Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J Infect Dis. 2005;191(2):289–98.Google Scholar
  161. 161.
    Otto M, Echner H, Voelter W, Gotz F. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun. 2001;69(3):1957–60.Google Scholar
  162. 162.
    Otto M, Sussmuth R, Vuong C, Jung G, Gotz F. Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett. 1999;450(3):257–62.Google Scholar
  163. 163.
    Xu L, Li H, Vuong C, Vadyvaloo V, Wang J, Yao Y, Otto M, Gao Q. Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun. 2006;74(1):488–96.Google Scholar
  164. 164.
    Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis. 2003;188(5):706–18.Google Scholar
  165. 165.
    Vuong C, Kocianova S, Yao Y, Carmody AB, Otto M. Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis. 2004;190(8):1498–505.Google Scholar
  166. 166.
    Yarwood JM, Schlievert PM. Quorum sensing in Staphylococcus infections. J Clin Invest. 2003;112(11):1620–5.Google Scholar
  167. 167.
    Yao Y, Vuong C, Kocianova S, Villaruz AE, Lai Y, Sturdevant DE, Otto M. Characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J Infect Dis. 2006;193(6):841–8.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PathologyCase Western Reserve UniversityClevelandUSA
  2. 2.ExponentPhiladelphiaUSA

Personalised recommendations