Silver Containing Biomaterials

  • Neil Poulter
  • Krasimir Vasilev
  • Stefani S. Griesser
  • Hans J. Griesser
Chapter

Abstract

Despite considerable research and development efforts, the problem of infections related to biomedical devices and implants persists. Silver has attracted considerable interest for its ability to mitigate bacterial colonization of biomaterials surfaces in vitro and has been used in some commercial products such as wound bandages. Silver ion releasing biomaterials are thus considered to be promising candidates for rendering surfaces of biomedical devices and implants resistant to bacterial attachment. Here we review a number of strategies used for the design of antibacterial coatings containing silver. We also discuss the continuing controversy regarding the potential for silver ions to exert adverse effects on human cells and tissue. Finally we briefly compare the silver release approach with the alternative strategy of antibacterial coatings comprising organic antibiotics covalently coupled onto biomaterials surfaces.

Keywords

Toxicity Catheter Bismuth Triglyceride Hydroxyapatite 

Notes

Acknowledgments

This work was supported in part by the Australian Government under NHMRC grant 1000737. KV acknowledges the Australian Research Council for support through fellowship FT100100292.

References

  1. 1.
    Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37((2, Supplement 1)):S3–14.CrossRefGoogle Scholar
  2. 2.
    Darouiche RO. Current concepts—treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–9.CrossRefGoogle Scholar
  3. 3.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.CrossRefGoogle Scholar
  4. 4.
    Hoyle BD, Jass J, Costerton JW. The biofilm glycocalyx as a resistance factor. J Antimicrob Chemother. 1990;26(1):1–5.CrossRefGoogle Scholar
  5. 5.
    Cheng G, Xite H, Zhang Z, Chen SF, Jiang SY. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed. 2008;47(46):8831–4.CrossRefGoogle Scholar
  6. 6.
    Gottenbos B, Van der Mei HC, Busscher HJ, Grijpma DW, Feijen J. Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). J Mater Sci Mater Med. 1999;10(12):853–5.CrossRefGoogle Scholar
  7. 7.
    Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials. 2007;28(6):909–15.CrossRefGoogle Scholar
  8. 8.
    Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA. 2001;98(11):5981–5.CrossRefGoogle Scholar
  9. 9.
    Fundeanu I, van der Mei HC, Schouten AJ, Busscher HJ. Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids Surf B Biointerfaces. 2008;64(2):297–301.CrossRefGoogle Scholar
  10. 10.
    Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25(18):4135–48.CrossRefGoogle Scholar
  11. 11.
    Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir. 2003;19(17):6912–21.CrossRefGoogle Scholar
  12. 12.
    Ostuni E, Chapman RG, Liang MN, et al. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir. 2001;17(20):6336–43.CrossRefGoogle Scholar
  13. 13.
    Schierholz JM, Lucas LJ, Rump A, Pulverer GJ. Efficacy of silver-coated medical devices. J Hosp Infect. 1998;40(4):257–62.CrossRefGoogle Scholar
  14. 14.
    Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–9.CrossRefGoogle Scholar
  15. 15.
    Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130(3):202–15.CrossRefGoogle Scholar
  16. 16.
    Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27(11):2450–67.CrossRefGoogle Scholar
  17. 17.
    Vasilev K, Cook J, Griesser HJ. Antibacterial surfaces for biomedical devices. Exp Rev Med Devices. 2009;6(5):553–67.CrossRefGoogle Scholar
  18. 18.
    Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate—poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials. 2006;27(23):4239–49.CrossRefGoogle Scholar
  19. 19.
    Alt V, Bitschnau A, Osterling J, et al. The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials. 2006;27(26):4627–34.CrossRefGoogle Scholar
  20. 20.
    Rauschmann MA, Wichelhaus TA, Stirnal V, et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 2005;26(15):2677–84.CrossRefGoogle Scholar
  21. 21.
    Jones SA, Bowler PG, Walker M, Parsons D. Controlling wound bioburden with a novel silver-containing hydrofiber((R)) dressing. Wound Repair Regen. 2004;12(3):288–94.CrossRefGoogle Scholar
  22. 22.
    Shanmugasundaram N, Sundaraseelan J, Uma S, Selvaraj D, Babu M. Design and delivery of silver sulfadiazine from alginate microspheres-impregnated collagen scaffold. J Biomed Mater Res B Appl Biomater. 2006;77B(2):378–88.CrossRefGoogle Scholar
  23. 23.
    Kumar R, Munstedt H. Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release. Polym Int. 2005;54(8):1180–6.CrossRefGoogle Scholar
  24. 24.
    Nablo BJ, Rothrock AR, Schoenfisch MH. Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants. Biomaterials. 2005;26(8):917–24.CrossRefGoogle Scholar
  25. 25.
    Poulter N, Donaldson M, Mulley G, Duque L, Waterfield N, Shard AG, Spencer S, Jenkins AT, Johnson AL. Plasma deposited metal Schiff-base compounds as antimicrobials. New J Chem. 2011;35(7):1477–84.CrossRefGoogle Scholar
  26. 26.
    Zafar F, Ashraf SM, Ahmad S. In situ development of Zn/Cd-incorporated poly(esteramide-urethane) from sustainable resource. J Appl Polym Sci. 2008;110(1):584–94.CrossRefGoogle Scholar
  27. 27.
    Coleman NJ. Aspects of the in vitro bioactivity and antimicrobial properties of Ag(+)- and Zn(2+)-exchanged 11 A tobermorites. J Mater Sci Mater Med. 2009;20(6):1347–55.CrossRefGoogle Scholar
  28. 28.
    Duque L, Forch R. Plasma polymerization of zinc acetyl acetonate for the development of a polymer-based zinc release system. Plasma Process Polym. 2011;8(5):444–51.CrossRefGoogle Scholar
  29. 29.
    Zhang W, Zhang YH, Ji JH, Zhao J, Yan Q, Chu PK. Antimicrobial properties of copper plasma-modified polyethylene. Polymer. 2006;47(21):7441–5.CrossRefGoogle Scholar
  30. 30.
    Mary G, Bajpai SK, Chand NJ. Copper (II) Ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci. 2009;113(2):757–66.CrossRefGoogle Scholar
  31. 31.
    Anyaogu KC, Fedorov AV, Neckers DC. Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir. 2008;24(8):4340–6.CrossRefGoogle Scholar
  32. 32.
    Mahony DE, Lim-Morrison S, Bryden L, Faulkner G, Hoffman PS, Agocs L, Briand GG, Burford N, Maguire H. Antimicrobial activities of synthetic bismuth compounds against Clostridium difficile. Antimicrob Agents Chemother. 1999;43(3):582–8.Google Scholar
  33. 33.
    Bland MV, Ismail S, Heinemann JA, Keenan JI. The action of bismuth against Helicobacter pylori mimics but is not caused by intracellular iron deprivation. Antimicrob Agents Chemother. 2004;48(6):1983–8.CrossRefGoogle Scholar
  34. 34.
    Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.CrossRefGoogle Scholar
  35. 35.
    Poon VKM, Burd A. In vitro cytotoxity of silver: implication for clinical wound care. Burns. 2004;30:140–7.CrossRefGoogle Scholar
  36. 36.
    Russell AD, Hugo WB. Antimicrobial activity and action of silver. In: Ellis GP, Luscombe DK, editors. Progress in medicinal chemistry. New York: Elsevier Science; 1994. p. 351–69.Google Scholar
  37. 37.
    Asharani PV, Wu YL, Gomg ZY, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19:Article No:255102.Google Scholar
  38. 38.
    Liu JY, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4(11):6903–13.CrossRefGoogle Scholar
  39. 39.
    Amberg M, Grieder K, Barbadoro P, Heuberger M, Hegemann D. Electromechanical behavior of nanoscale silver coatings on PET fibers. Plasma Processes Polym. 2008;5(9):874–80.CrossRefGoogle Scholar
  40. 40.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346–53.CrossRefGoogle Scholar
  41. 41.
    Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC. Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater. 2004;16(12):957–61.CrossRefGoogle Scholar
  42. 42.
    Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM. Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr Polym. 2009;75(3):463–71.CrossRefGoogle Scholar
  43. 43.
    Lee H, Lee Y, Statz AR, Rho J, Park TG, Messersmith PB. Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater. 2008;20(9):1619–23.CrossRefGoogle Scholar
  44. 44.
    de Santa Maria LC, Souza JDC, Aguiar M, et al. Synthesis, characterization, and bactericidal properties of composites based on crosslinked resins containing silver. J Appl Polymer Sci. 2008;107(3):1879–86.CrossRefGoogle Scholar
  45. 45.
    Ramstedt M, Cheng N, Azzaroni O, Mossialos D, Mathieu HJ, Huck WTS. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications. Langmuir. 2007;23(6):3314–21.CrossRefGoogle Scholar
  46. 46.
    Ramstedt M, Ekstrand-Hammarstrom B, Shchukarev AV, Bucht A, Osterlund L, Welch M, Huck WTS. Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts. Biomaterials. 2009;30(8):1524–31.CrossRefGoogle Scholar
  47. 47.
    Zaporojtchenko V, Podschun R, Schurmann U, Kulkarni A, Faupel F. Physico-chemical and antimicrobial properties of co-sputtered Ag-Au/PTFE nanocomposite coatings. Nanotechnology. 2006;17(19):4904–8.CrossRefGoogle Scholar
  48. 48.
    Despax B, Raynaud P. Deposition of “polysiloxane” thin films containing silver particles by an RF asymmetrical discharge. Plasma Processes Polym. 2007;4(2):127–34.CrossRefGoogle Scholar
  49. 49.
    Korner E, Aguirre MH, Fortunato G, Ritter A, Ruhe J, Hegemann D. Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag(+) release properties. Plasma Process Polym. 2010;7(7):619–25.CrossRefGoogle Scholar
  50. 50.
    Vasilev K, Sah V, Anselme K, Ndi C, Mateescu M, Dollmann B, Martinek P, Ys H, Ploux L, Griesser HJ. Tunable antibacterial coatings that support mammalian cell growth. Nano Lett. 2010;10:202–7.CrossRefGoogle Scholar
  51. 51.
    Poulter N, Munoz-Berbel X, Johnson AL, Dowling AJ, Waterfield N, Jenkins ATA. An organo-silver compound that shows antimicrobial activity against Pseudomonas aeruginosa as a monomer and plasma deposited film. Chem Commun. 2009;47:7312–4.CrossRefGoogle Scholar
  52. 52.
    Eksik O, Erciyes AT, Yagci Y. In situ synthesis of oil based polymer composites containing silver nanoparticles. J Macromol Sci A Pure Appl Chem. 2008;45(9):698–704.CrossRefGoogle Scholar
  53. 53.
    Furno F, Morley KS, Wong B, et al. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother. 2004;54(6):1019–24.CrossRefGoogle Scholar
  54. 54.
    Kelly FM, Johnston JH, Borrmann T, Richardson MJ. Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. Eur J Inorg Chem. 2007;35:5571–7.CrossRefGoogle Scholar
  55. 55.
    Kong H, Jang J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir. 2008;24(5):2051–6.CrossRefGoogle Scholar
  56. 56.
    Liu SX, He JH, Xue JF, Ding WJ. Efficient fabrication of transparent antimicrobial poly(vinyl alcohol) thin films. J Nanoparticle Res. 2009;11(3):553–60.CrossRefGoogle Scholar
  57. 57.
    Sambhy V, Peterson BR, Sen A. Multifunctional silane polymers for persistent surface derivatization and their antimicrobial properties. Langmuir. 2008;24(14):7549–58.CrossRefGoogle Scholar
  58. 58.
    Mallick K, Witcomb MJ, Scurrell MS. Self-assembly of silver nanoparticles: formation of a thin silver film in a polymer matrix. Mater Sci Eng C Biomimetic Supramolecular Syst. 2006;26(1):87–91.CrossRefGoogle Scholar
  59. 59.
    Lu J, Moon KS, Wong CP. Silver/polymer nanocomposite as a high-k polymer matrix for dielectric composites with improved dielectric performance. J Mater Chem. 2008;18(40):4821–6.CrossRefGoogle Scholar
  60. 60.
    Gray JE, Norton PR, Griffiths K. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane). Thin Solid Films. 2005;484(1–2):196–207.CrossRefGoogle Scholar
  61. 61.
    Sanchez-Valdes S, Ortega-Ortiz H, Valle L, Medellin-Rodriguez FJ, Guedea-Miranda R. Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J Appl Polymer Sci. 2009;111(2):953–62.Google Scholar
  62. 62.
    Galya T, Sedlarik V, Kuritka I, Novotny R, Sedlarikova J, Saha P. Antibacterial poly(vinyl alcohol) film containing silver nanoparticles: preparation and characterization. J Appl Polym Sci. 2008;110(5):3178–85.CrossRefGoogle Scholar
  63. 63.
    Schwarz F, Thorwarth G, Wehlus T, Stritzker B. Silver nanocluster containing diamond like carbon. Phys Status Solidi A Appl Mater Sci. 2008;205(4):976–9.CrossRefGoogle Scholar
  64. 64.
    Voccia S, Ignatova M, Jerome R, Jerome C. Design of antibacterial surfaces by a combination of electrochemistry and controlled radical polymerization. Langmuir. 2006;22(20):8607–13.CrossRefGoogle Scholar
  65. 65.
    Kong H, Jang J. Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules. 2008;9(10):2677–81.CrossRefGoogle Scholar
  66. 66.
    Vachon DJ, Yager DR. Novel sulfonated hydrogel composite with the ability to inhibit proteases and bacterial growth. J Biomed Mater Res A. 2006;76A(1):35–43.CrossRefGoogle Scholar
  67. 67.
    Kumar A, Vemula PK, Ajayan PM, John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater. 2008;7(3):236–41.CrossRefGoogle Scholar
  68. 68.
    Sambhy V, MacBride MM, Peterson BR, Sen A. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc. 2006;128(30):9798–808.CrossRefGoogle Scholar
  69. 69.
    Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother. 2010;54(10):4208–18.CrossRefGoogle Scholar
  70. 70.
    Schneider OD, Loher S, Brunner TJ, Schmidlin P, Stark WJ. Flexible, silver containing nanocomposites for the repair of bone defects: antimicrobial effect against E. coli infection and comparison to tetracycline containing scaffolds. J Mater Chem. 2008;18(23):2679–84.CrossRefGoogle Scholar
  71. 71.
    Heidenau F, Mittelmeier W, Detsch R, et al. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J Mater Sci Mater Med. 2005;16(10):883–8.CrossRefGoogle Scholar
  72. 72.
    Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai LM, Hussain SM. Can silver nanoparticles be useful as potential biological labels? Nanotechnology. 2008; 19 (23):Article Number 235104.Google Scholar
  73. 73.
    Kalishwaralal K, Banumathi E, Pandian SRK, Deepak V, Muniyandi J, Eom SH, Gurunathan S. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces. 2009;73(1):51–7.CrossRefGoogle Scholar
  74. 74.
    Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C. Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25(24):5547–56.CrossRefGoogle Scholar
  75. 75.
    Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials. 2007;28(18):2869–75.CrossRefGoogle Scholar
  76. 76.
    Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27(32):5512–7.CrossRefGoogle Scholar
  77. 77.
    Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W. Silver coated dressing Acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma. 2006; 60(3):648–52.CrossRefGoogle Scholar
  78. 78.
    Riley DM, Classen DC, Stevens LE, Burke JP. A large randomized clinical-trial of a silver-impregnated urinary catheter—lack of efficacy and Staphylococcal superinfection. Am J Med. 1995;98(4):349–56.CrossRefGoogle Scholar
  79. 79.
    Srinivasan A, Karchmer T, Richards A, Song X, Perl TM. A prospective trial of a novel, silicone-based, silver-coated Foley catheter for the prevention of nosocomial urinary tract infections. Infect Control Hosp Epidemiol. 2006;27(1):38–43.CrossRefGoogle Scholar
  80. 80.
    Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF, Murphy CJ, Abbott NL. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials. 2010;31(4):680–90.CrossRefGoogle Scholar
  81. 81.
    Raad I, Hachem R, Zermeno A, Dumo M, Bodey GP. In vitro antimicrobial efficacy of silver iontophoretic catheter. Biomaterials. 1996;17(11):1055–9.CrossRefGoogle Scholar
  82. 82.
    Raad I, Hachem R, Zermeno A, Stephens LC, Bodey GP. Silver iontophoretic catheter: a prototype of a long-term antiinfective vascular access device. J Infect Dis. 1996;173(2):495–8.CrossRefGoogle Scholar
  83. 83.
    Hachem RY, Wright KC, Zermeno A, Bodey GP, Raad II. Evaluation of the silver iontophoretic catheter in an animal model. Biomaterials. 2003;24(20):3619–22.CrossRefGoogle Scholar
  84. 84.
    Loher S, Schneider OD, Maienfisch T, Bokorny S, Stark WJ. Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces. Small. 2008;4(6):824–32.CrossRefGoogle Scholar
  85. 85.
    Jenkins ATA, Young AER. Smart dressings for the prevention of infection in pediatric burns patients. Expert Rev Anti Infect Ther. 2010;8:1063–5.CrossRefGoogle Scholar
  86. 86.
    Zhou J, Loftus AL, Mulley GJ, Jenkins ATA. A thin film detection/response system for pathogenic bacteria. J Am Chem Soc. 2010;132(18):6566–70.CrossRefGoogle Scholar
  87. 87.
    Anwar H, Strap JL, Costerton JW. Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother. 1992;36(7):1347–51.CrossRefGoogle Scholar
  88. 88.
    Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2–3):341–53.CrossRefGoogle Scholar
  89. 89.
    Shi ZL, Neoh KG, Kang ET, Wang W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials. 2006;27(11):2440–9.CrossRefGoogle Scholar
  90. 90.
    Munoz-Bonilla A, Fernandez-Garcia M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37(1):281–339.CrossRefGoogle Scholar
  91. 91.
    Dhende VP, Samanta S, Jones DM, Hardin IR, Locklin J. One-step photochemical synthesis of permanent, nonleaching, ultrathin antimicrobial coatings for textiles and plastics. ACS Appl Mater Interfaces. 2011;3(8):2830–7.CrossRefGoogle Scholar
  92. 92.
    Jampala SN, Sarmadi M, Somers EB, Wong ACL, Denes FS. Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces. Langmuir. 2008;24(16):8583–91.CrossRefGoogle Scholar
  93. 93.
    Mowery BP, Lindner AH, Weisblum B, Stahl SS, Gellman SH. Structure-activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. J Am Chem Soc. 2009;131:9735–45.CrossRefGoogle Scholar
  94. 94.
    Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2011;7:1431–40.CrossRefGoogle Scholar
  95. 95.
    Palermo EF, Kuroda K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol. 2010;87(5):1605–15.CrossRefGoogle Scholar
  96. 96.
    Kuehl R, Al-Bataineh S, Gordon O, Luginbuehl R, Otto M, Textor M, Landmann R. Furanone at subinhibitory concentrations enhances staphylococcal biofilm formation by luxS repression. Antimicrob Agents Chemother. 2009;53(10):4159–66.CrossRefGoogle Scholar
  97. 97.
    Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol. 2006;106(3):290–302.CrossRefGoogle Scholar
  98. 98.
    von Nussbaum F, Brands M, Hinzen B, Weigand S, Habich D. Antibacterial natural products in medicinal chemistry—exodus or revival? Angew Chem Int Ed. 2006;45(31):5072–129.CrossRefGoogle Scholar
  99. 99.
    Ndi CP, Semple SJ, Griesser HJ, Pyke SM, Barton MD. Antimicrobial compounds from the Australian desert plant Eremophila neglecta. J Nat Prod. 2007;70(9):1439–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Neil Poulter
    • 1
    • 2
  • Krasimir Vasilev
    • 2
  • Stefani S. Griesser
    • 1
    • 2
  • Hans J. Griesser
    • 1
  1. 1.Ian Wark Research InstituteUniversity of South AustraliaMawson LakesAustralia
  2. 2.Mawson InstituteUniversity of South AustraliaMawson LakesAustralia

Personalised recommendations