Skip to main content

Antimicrobial Medical Devices in Preclinical Development and Clinical Use

  • Chapter
  • First Online:
Biomaterials Associated Infection

Abstract

Medical devices are increasingly used worldwide for an expanding ­repertoire of patient clinical needs. Biomaterials and medical device designs have become progressively more complex to accommodate diverse demands for performance and safety in vivo. While a majority of these implants satisfy their clinical expectations with safety and efficacy in their specific applications, a minority of implants induce serious adverse events with substantial health and economic consequences. One recognized challenge is the growing clinical problem with implant-associated infections. Increasing number and types of implants used in patients have resulted in increasing numbers of biomaterial-associated infections. Researchers and medical device manufacturers have responded to this challenge with intensified attention to innovating device designs, surgical implantation protocols, and biomaterials to minimize infection opportunities. Medical devices with claims to limit microbial adhesion and colonization using combinations of pharmacological, topological, and materials chemistry approaches have been brought into clinical use with the intent of reducing device-related infections. Many types of catheters, stents, orthopedic devices, contact lenses, surgical meshes, shunts, sutures, cardiovascular replacements, and many other device categories offer antimicrobial enhancements. Approaches include different biomaterials chemistries that intrinsically resist microbial colonization or that deter active growth on contact, surface modifications that produce topologies observed to limit pathogen attachment, medicinal, antiseptic or bioactive coatings, direct antimicrobial attachment to surfaces, or drug impregnation within the biomaterial, and extended release strategies that control antimicrobial agent release from the device over time after implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US Food and Drug Administration. Is the product a medical device? 2002; http://www.fda.gov/medicaldevices/deviceregulationandguidance/overview/classifyyourdevice/ucm051512.htm, accessed June, 2012.

  2. Simchi A, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7(1):22–39.

    Article  CAS  Google Scholar 

  3. Chu PK, Liux, editors. Biomaterials fabrication and processing handbook. Boca Raton: CRC Press, Taylor & Francis Group; 2008. p. ix.

    Google Scholar 

  4. Zimmerli W, Trampuz A. Implant-associated infections. In Bjarnsholt T, Moser C, Jensen P, Rigshopitalet HS, Hoiby N (Eds): Biofilm infections. Springer Science; 2011. pp. 69–89.

    Google Scholar 

  5. Medical Devices Industry Outlook—April 2011. 2011 [cited 2012 1/5/2012]. http://www.informationweek.com/news/mobility/business/232301163

  6. Popat KC, et al. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small. 2007;3(11):1878–81.

    Article  CAS  Google Scholar 

  7. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–9.

    Article  CAS  Google Scholar 

  8. von Eiff C, et al. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs. 2005;65(2):179–214.

    Article  Google Scholar 

  9. Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130:202–15.

    Article  CAS  Google Scholar 

  10. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.

    Article  CAS  Google Scholar 

  11. Gilbert P, Collier PJ, Brown MR. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother. 1990;34(10):1865–8.

    Article  CAS  Google Scholar 

  12. Gristina A. Biomaterial-centered infection: microbial adhesion versus tissue integration. Clin Orthop Relat Res. 2004;(427):4–12.

    Google Scholar 

  13. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237(4822):1588–95.

    Article  CAS  Google Scholar 

  14. Springer BD, et al. Systemic safety of high-dose antibiotic-loaded cement spacers after resection of an infected total knee arthroplasty. Clin Orthop Relat Res. 2004;427:47–51.

    Article  Google Scholar 

  15. Zalavras CG, Patzakis MJ, Holtom P. Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop Relat Res. 2004;427:86–93.

    Article  Google Scholar 

  16. Laupland KB, et al. Cost of intensive care unit-acquired bloodstream infections. J Hosp Infect. 2006;63(2):124–32.

    Article  CAS  Google Scholar 

  17. Bryers JD. Medical biofilms. Biotechnol Bioeng. 2008;100(1):1–18.

    Article  CAS  Google Scholar 

  18. Pollack A. Rising threat of infections unfazed by antibiotics. In: New York Times; 2010.

    Google Scholar 

  19. Walker EP. Medicaid to quit paying for preventable events. In: Medpage Today. Washington, DC; 2011.

    Google Scholar 

  20. Price JS, et al. Controlled release of antibiotics from coated orthopedic implants. J Biomed Mater Res. 1996;30(3):281–6.

    Article  CAS  Google Scholar 

  21. Ruszczak Z, Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv Drug Deliv Rev. 2003;55(12):1679–98.

    Article  CAS  Google Scholar 

  22. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.

    Article  CAS  Google Scholar 

  23. Parsek MR, Greenberg EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 2005;13(1):27–33.

    Article  CAS  Google Scholar 

  24. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–9.

    Article  CAS  Google Scholar 

  25. Smith AW. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev. 2005;57(10):1539–50.

    Article  CAS  Google Scholar 

  26. Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol. 2010;59(3):227–38.

    CAS  Google Scholar 

  27. Gold HS, Moellering Jr RC. Antimicrobial-drug resistance. N Engl J Med. 1996;335(19):1445–53.

    Article  CAS  Google Scholar 

  28. Gransden WR. Antibiotic resistance. Nosocomial gram-negative infection. J Med Microbiol. 1997;46(6):436–9.

    Article  CAS  Google Scholar 

  29. FDA. Premarket Notification [510(k)] Submissions for Medical Devices that include antimicrobial agents. FDA; 2007.

    Google Scholar 

  30. Davis SC, et al. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen. 2008;16(1):23–9.

    Article  Google Scholar 

  31. Otto M. Staphylococcal Biofilms, Vol 322. In: Romeo T, editor. Current Topics in Microbiology and Immunology:Bacterial Biofilms. Springer Verlag: Berlin; 2008.

    Google Scholar 

  32. Yao Y, et al. Factors characterizing Staphylococcus epidermidis invasiveness determined by comparative genomics. Infect Immun. 2005;73(3):1856–60.

    Article  CAS  Google Scholar 

  33. Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37 Suppl 2:S3–14.

    Article  Google Scholar 

  34. An YH, Friedman RJ. Prevention of sepsis in total joint arthroplasty. J Hosp Infect. 1996;33(2):93–108.

    Article  CAS  Google Scholar 

  35. Friedman RJ. Infection in total joint arthroplasty from distal intravenous lines. A case report. J Arthroplasty. 1988;3(Suppl):S69–71.

    Article  Google Scholar 

  36. Broekhuizen CA, et al. Staphylococcus epidermidis is cleared from biomaterial implants but persists in peri-implant tissue in mice despite rifampicin/vancomycin treatment. J Biomed Mater Res A. 2008;85(2):498–505.

    Google Scholar 

  37. Al-Fattani MA, Douglas LJ. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother. 2004;48(9):3291–7.

    Article  CAS  Google Scholar 

  38. Adam B, Baillie GS, Douglas LJ. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol. 2002;51(4):344–9.

    Google Scholar 

  39. Rohacek M, et al. Bacterial colonization and infection of electrophysiological cardiac devices detected with sonication and swab culture. Circulation. 2010;121(15):1691–7.

    Article  Google Scholar 

  40. Trampuz A, Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis. 2006;19(4):349–56.

    Article  CAS  Google Scholar 

  41. Poelstra KA, et al. Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. J Biomed Mater Res. 2002;60(1):206–15.

    Article  CAS  Google Scholar 

  42. Elek SD, Conen PE. The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br J Exp Pathol. 1957;38(6):573–86.

    CAS  Google Scholar 

  43. Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27(11):2450–67.

    Article  CAS  Google Scholar 

  44. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580–8.

    Article  CAS  Google Scholar 

  45. Hartung T. Thoughts on limitations of animal models. Parkinsonism Relat Disord. 2008;14 Suppl 2:S81–3.

    Article  Google Scholar 

  46. Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol. 2002;92(Suppl):65S–71.

    Article  Google Scholar 

  47. Sampath LA, Tambe SM, Modak SM. In vitro and in vivo efficacy of catheters impregnated with antiseptics or antibiotics: evaluation of the risk of bacterial resistance to the antimicrobials in the catheters. Infect Control Hosp Epidemiol. 2001;22(10):640–6.

    Article  CAS  Google Scholar 

  48. Patti JM, et al. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol. 1994;48:585–617.

    Article  CAS  Google Scholar 

  49. Rodrigues L, et al. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol Med Microbiol. 2006;46(1):107–12.

    Article  CAS  Google Scholar 

  50. Rodrigues L, et al. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl Microbiol Biotechnol. 2004;66(3):306–11.

    Article  CAS  Google Scholar 

  51. Rodrigues L, et al. Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol. 2004;70(7):4408–10.

    Article  CAS  Google Scholar 

  52. Habash M, Reid G. Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol. 1999;39(9):887–98.

    Article  CAS  Google Scholar 

  53. Lee JH, et al. Prosthetic valve endocarditis: clinicopathological correlates in 122 surgical specimens from 116 patients (1985–2004). Cardiovasc Pathol. 2011;20(1):26–35.

    Article  Google Scholar 

  54. Sampedro MF, Patel R. Infections associated with long-term prosthetic devices. Infect Dis Clin North Am. 2007;21(3):785–819. x.

    Article  Google Scholar 

  55. Darouiche RO. Antimicrobial coating of devices for prevention of infection: principles and protection. Int J Artif Organs. 2007;30(9):820–7.

    CAS  Google Scholar 

  56. Darouiche RO. Antimicrobial approaches for preventing infections associated with surgical implants. Clin Infect Dis. 2003;36(10):1284–9.

    Article  Google Scholar 

  57. Linke D. Bacterial adhesion: chemistry, biology and physics. London: Springer; 2011.

    Book  Google Scholar 

  58. Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir. 2003;19:6912–21.

    Article  CAS  Google Scholar 

  59. Kaper HJ, Busscher HJ, Norde W. Characterization of poly(ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis. J Biomater Sci Polym Ed. 2003; 14(4):313–24.

    Article  CAS  Google Scholar 

  60. Tebbs SE, Sawyer A, Elliott TS. Influence of surface morphology on in vitro bacterial adherence to central venous catheters. Br J Anaesth. 1994;72(5):587–91.

    Article  CAS  Google Scholar 

  61. Nagel JA, Dickinson RB, Cooper SL. Bacterial adhesion to polyurethane surfaces in the presence of pre-adsorbed high molecular weight kininogen. J Biomater Sci Polym Ed. 1996;7(9):769–80.

    Article  CAS  Google Scholar 

  62. Gosheger G, et al. Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25(24):5547–56.

    Article  CAS  Google Scholar 

  63. Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir. 2005;21(21):9651–9.

    Article  CAS  Google Scholar 

  64. Rojas IA, Slunt JB, Grainger DW. Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion. J Control Release. 2000;63(1–2):175–89.

    Article  CAS  Google Scholar 

  65. Blaker JJ, Nazhat SN, Boccaccini AR. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials. 2004;25(7–8):1319–29.

    Article  CAS  Google Scholar 

  66. Song WH, Ryu HS, Hong SH. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation. J Biomed Mater Res A. 2009;88(1):246–54.

    Google Scholar 

  67. Chang TW, Weinstein L. Prevention of herpes keratoconjunctivitis in rabbits by silver sulfadiazine. Antimicrob Agents Chemother. 1975;8(6):677–8.

    Article  CAS  Google Scholar 

  68. Jung WK, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–8.

    Article  CAS  Google Scholar 

  69. Yang W, et al. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 2009;20(8):085102.

    Article  CAS  Google Scholar 

  70. Feng QL, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–8.

    Article  CAS  Google Scholar 

  71. Shrivastava, Siddhartha and Bera, Tanmay and Roy, Arnab and Singh, Gajendra and Ramachandrarao, P and Dash, Debabrata. Characterization of enhanced antibacterial effects of novel silver nanoparticles Nanotechnology. 2007; 18(22):5.

    Google Scholar 

  72. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.

    Article  CAS  Google Scholar 

  73. Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents. 2004;23 Suppl 1:S75–8.

    Article  CAS  Google Scholar 

  74. Chopra I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother. 2007;59(4):587–90.

    Article  CAS  Google Scholar 

  75. Darouiche RO. Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis. 2001;33(9):1567–72.

    Article  CAS  Google Scholar 

  76. Stickler DJ. Biomaterials to prevent nosocomial infections: is silver the gold standard? Curr Opin Infect Dis. 2000;13(4):389–93.

    Article  CAS  Google Scholar 

  77. Hermans MH. Silver-containing dressings and the need for evidence. Adv Skin Wound Care. 2007;20(3):166–73. quiz 174–5.

    Article  Google Scholar 

  78. Zilberman M, et al. Drug-eluting medical implants. Handb Exp Pharmacol. 2010;197:299–341.

    Article  CAS  Google Scholar 

  79. Kawashita M, et al. Antibacterial silver-containing silica glass prepared by sol–gel method. Biomaterials. 2000;21(4):393–8.

    Article  CAS  Google Scholar 

  80. Balamurugan A, et al. An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent Mater. 2008;24(10):1343–51.

    Article  CAS  Google Scholar 

  81. Bellantone M, Coleman NJ, Hench LL. Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res. 2000;51(3):484–90.

    Article  CAS  Google Scholar 

  82. Wu C, et al. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol–gel method. Acta Biomater. 2008;4(3):569–76.

    Article  CAS  Google Scholar 

  83. Kumar R, Howdle S, Munstedt H. Polyamide/silver antimicrobials: effect of filler types on the silver ion release. J Biomed Mater Res B Appl Biomater. 2005;75(2):311–9.

    Google Scholar 

  84. Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26(14):2081–8.

    Article  CAS  Google Scholar 

  85. Chohfi M, et al. Pharmacokinetics, uses, and limitations of vancomycin-loaded bone cement. Int Orthop. 1998;22(3):171–7.

    Article  CAS  Google Scholar 

  86. Kanellakopoulou K, Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs. 2000;59(6):1223–32.

    Article  CAS  Google Scholar 

  87. Walenkamp GH, Vree TB, van Rens TJ. Gentamicin-PMMA beads. Pharmacokinetic and nephrotoxicological study. Clin Orthop Relat Res. 1986;205:171–83.

    Google Scholar 

  88. Diefenbeck M, Muckley T, Hofmann GO. Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury. 2006;37 Suppl 2:S95–104.

    Article  Google Scholar 

  89. Neut D, et al. The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. Acta Orthop Scand. 2003;74(6):670–6.

    Article  Google Scholar 

  90. Neut D, et al. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother. 2001;47(6):885–91.

    Article  CAS  Google Scholar 

  91. Fuchs T, et al. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131(10):1419–25.

    Article  Google Scholar 

  92. Schmidmaier G, et al. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37 Suppl 2:S105–12.

    Article  Google Scholar 

  93. Brohede U, et al. Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release. J Mater Sci Mater Med. 2009;20(9):1859–67.

    Article  CAS  Google Scholar 

  94. Schierholz JM, et al. Controlled release of antibiotics from biomedical polyurethanes: morphological and structural features. Biomaterials. 1997;18(12):839–44.

    Article  CAS  Google Scholar 

  95. Kwok CS, Horbett TA, Ratner BD. Design of infection-resistant antibiotic-releasing polymers.II. Controlled release of antibiotics through a plasma-deposited thin film barrier. J Control Release. 1999;62(3):301–11.

    Article  CAS  Google Scholar 

  96. Kwok CS, et al. Design of infection-resistant antibiotic-releasing polymers: I. Fabrication and formulation. J Control Release. 1999;62(3):289–99.

    Article  CAS  Google Scholar 

  97. Govender ST, Nathoo N, van Dellen JR. Evaluation of an antibiotic-impregnated shunt system for the treatment of hydrocephalus. J Neurosurg. 2003;99(5):831–9.

    Article  Google Scholar 

  98. Joseph TN, Chen AL, Di Cesare PE. Use of antibiotic-impregnated cement in total joint arthroplasty. J Am Acad Orthop Surg. 2003;11(1):38–47.

    Google Scholar 

  99. Kress P, Schäfer P, Schwerdtfeger FP. Clinical use of a voice prosthesis with a flap valve containing silver oxide (Blom-Singer Advantage), biofilm formation, in-situ lifetime and indication. Laryngorhinootologie. 2006;85(12):893–6.

    Article  CAS  Google Scholar 

  100. Hancock RE. Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis. 2005;5(4):209–18.

    Article  CAS  Google Scholar 

  101. Tiller JC, et al. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA. 2001;98(11):5981–5.

    Article  CAS  Google Scholar 

  102. Endo Y, Tani T, Kodama M. Antimicrobial activity of tertiary amine covalently bonded to a polystyrene fiber. Appl Environ Microbiol. 1987;53(9):2050–5.

    CAS  Google Scholar 

  103. Gottenbos B, et al. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials. 2002;23(6):1417–23.

    Article  CAS  Google Scholar 

  104. Flemming RG, et al. Bacterial colonization of functionalized polyurethanes. Biomaterials. 2000;21(3):273–81.

    Article  CAS  Google Scholar 

  105. Fuchs AD, Tiller JC. Contact-active antimicrobial coatings derived from aqueous suspensions. Angew Chem Int Ed Engl. 2006;45(40):6759–62.

    Article  CAS  Google Scholar 

  106. Gabriel M, et al. Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjug Chem. 2006;17(2):548–50.

    Article  CAS  Google Scholar 

  107. Gelman MA, et al. Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org Lett. 2004;6(4):557–60.

    Article  CAS  Google Scholar 

  108. Ketonis C, et al. Antibacterial activity of bone allografts: comparison of a new vancomycin-tethered allograft with allograft loaded with adsorbed vancomycin. Bone. 2011;48(3):631–8.

    Article  CAS  Google Scholar 

  109. Parvizi J, et al. Frank Stinchfield Award. Titanium surface with biologic activity against infection. Clin Orthop Relat Res. 2004;429:33–8.

    Article  Google Scholar 

  110. Antoci Jr V, et al. Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin Orthop Relat Res. 2007;461:81–7.

    Google Scholar 

  111. Aumsuwan N, Heinhorst S, Urban MW. The effectiveness of antibiotic activity of penicillin attached to expanded poly(tetrafluoroethylene) (ePTFE) surfaces: a quantitative assessment. Biomacromolecules. 2007;8(11):3525–30.

    Article  CAS  Google Scholar 

  112. Aumsuwan N, et al. Attachment of ampicillin to expanded poly(tetrafluoroethylene): surface reactions leading to inhibition of microbial growth. Biomacromolecules. 2008;9(7):1712–8.

    Article  CAS  Google Scholar 

  113. Antoci Jr V, et al. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials. 2008;29(35):4684–90.

    Article  CAS  Google Scholar 

  114. Yang J, Welby JL, Meyerhoff ME. Generic nitric oxide (NO) generating surface by immobilizing organoselenium species via layer-by-layer assembly. Langmuir. 2008;24(18):10265–72.

    Article  CAS  Google Scholar 

  115. Cha W, Meyerhoff ME. Catalytic generation of nitric oxide from S-nitrosothiols using immobilized organoselenium species. Biomaterials. 2007;28(1):19–27.

    Article  CAS  Google Scholar 

  116. Teller M, et al. Release of gentamicin from bone regenerative materials: an in vitro study. J Biomed Mater Res B Appl Biomater. 2007;81(1):23–9.

    CAS  Google Scholar 

  117. Gollwitzer H, et al. Antibacterial poly(d, l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother. 2003;51(3):585–91.

    Article  CAS  Google Scholar 

  118. Gollwitzer H, et al. Biomechanical and allergological characteristics of a biodegradable poly(d, l-lactic acid) coating for orthopaedic implants. J Orthop Res. 2005;23(4):802–9.

    Article  CAS  Google Scholar 

  119. Fitzgerald Jr RH. Microbiologic environment of the conventional operating room. Arch Surg. 1979;114(7):772–5.

    Article  Google Scholar 

  120. Steckelberg J, Osmon D. Prosthetic Joint Infection. In: Waldvogel FA, Bisno AL, editors. Infections Associated with Indwelling Medical Devices. American Society of Microbiologists, Washington: D.C.; 2000.

    Google Scholar 

  121. Wells CL, Maddaus MA, Simmons RL. Role of the macrophage in the translocation of intestinal bacteria. Arch Surg. 1987;122(1):48–53.

    Article  CAS  Google Scholar 

  122. Guo W, et al. Enteric bacterial translocation after intraperitoneal implantation of rubber drain pieces. Scand J Gastroenterol. 1993;28(5):393–400.

    Article  CAS  Google Scholar 

  123. Hill EE, et al. Evolving trends in infective endocarditis. Clin Microbiol Infect. 2006;12(1):5–12.

    Article  CAS  Google Scholar 

  124. Illingworth BL, et al. In vivo efficacy of silver-coated (Silzone) infection-resistant polyester fabric against a biofilm-producing bacteria, Staphylococcus epidermidis. J Heart Valve Dis. 1998;7(5):524–30.

    CAS  Google Scholar 

  125. Carrel T, et al. Definitive cure of recurrent prosthetic endocarditis using silver-coated St. Jude Medical heart valves: a preliminary case report. J Heart Valve Dis. 1998;7(5):531–3.

    CAS  Google Scholar 

  126. Grunkemeier GL, Jin R, Starr A. Prosthetic heart valves: objective performance criteria versus randomized clinical trial. Ann Thorac Surg. 2006;82(3):776–80.

    Article  Google Scholar 

  127. Jamieson WR, et al. Seven-year results with the St Jude Medical Silzone mechanical prosthesis. J Thorac Cardiovasc Surg. 2009;137(5):1109–15. e2.

    Article  Google Scholar 

  128. Ghanbari H, et al. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 2009;27(6):359–67.

    Article  CAS  Google Scholar 

  129. Atiyeh BS, et al. Effect of silver on burn wound infection control and healing: review of the literature. Burns. 2007;33(2):139–48.

    Article  Google Scholar 

  130. Kaufmann BA, et al. Coronary stent infection: a rare but severe complication of percutaneous coronary intervention. Swiss Med Wkly. 2005;135(33–34):483–7.

    Google Scholar 

  131. Deiparine MK, et al. Endovascular stent infection. J Vasc Surg. 1996;23(3):529–33.

    Article  CAS  Google Scholar 

  132. Takahashi H, Letourneur D, Grainger DW. Delivery of large biopharmaceuticals from cardiovascular stents: a review. Biomacromolecules. 2007;8(11):3281–93.

    Article  CAS  Google Scholar 

  133. Yan Y, et al. Rapamycin can inhibit the development of Chlamydia pneumoniae, which might partly contribute to the prevention of in-stent restenosis. Cardiovasc Drugs Ther. 2010; 24(3):189–95.

    Article  CAS  Google Scholar 

  134. Spaulding C, et al. Four-year follow-up of TYPHOON (trial to assess the use of the CYPHer sirolimus-eluting coronary stent in acute myocardial infarction treated with BallOON angioplasty). JACC Cardiovasc Interv. 2011;4(1):14–23.

    Article  Google Scholar 

  135. Zhang F, Dong L, Ge J. Meta-analysis of five randomized clinical trials comparing sirolimus- versus paclitaxel-eluting stents in patients with diabetes mellitus. Am J Cardiol. 2010;105(1):64–8.

    Article  CAS  Google Scholar 

  136. Zimarino M, De Caterina R. Actinomycin D-eluting stents do not reduce the risk of restenosis. Commentary. Evid Based Cardiovasc Med. 2005;9(1):41–3.

    Article  Google Scholar 

  137. Serruys PW, et al. Actinomycin-eluting stent for coronary revascularization: a randomized feasibility and safety study: the ACTION trial. J Am Coll Cardiol. 2004;44(7):1363–7.

    CAS  Google Scholar 

  138. Silber S. When are drug-eluting stents effective? A critical analysis of the presently available data. Z Kardiol. 2004;93(9):649–63.

    Article  CAS  Google Scholar 

  139. Espehaug B, et al. Antibiotic prophylaxis in total hip arthroplasty. Review of 10,905 primary cemented total hip replacements reported to the Norwegian arthroplasty register, 1987 to 1995. J Bone Joint Surg Br. 1997;79(4):590–5.

    Article  CAS  Google Scholar 

  140. Mahan J, et al. Factors in pin tract infections. Orthopedics. 1991;14(3):305–8.

    CAS  Google Scholar 

  141. Forster H, et al. Bactericidal activity of antimicrobial coated polyurethane sleeves for external fixation pins. J Orthop Res. 2004;22(3):671–7.

    Article  CAS  Google Scholar 

  142. von Plocki SC, et al. Biodegradable sleeves for metal implants to prevent implant-associated infection: an experimental in vivo study in sheep. Vet Surg. 2012;41:410–21.

    Google Scholar 

  143. Lucke M, et al. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone. 2003;32(5):521–31.

    Article  CAS  Google Scholar 

  144. Dietz UA, Spor L, Germer CT. Management of mesh-related infections. Chirurg. 2011; 82(3):208–17.

    Article  CAS  Google Scholar 

  145. Bhende S, et al. Infection potentiation study of synthetic and naturally derived surgical mesh in mice. Surg Infect (Larchmt). 2007;8(3):405–14.

    Article  Google Scholar 

  146. Hansen LK, et al. In vivo model of human pathogen infection and demonstration of efficacy by an antimicrobial pouch for pacing devices. Pacing Clin Electrophysiol. 2009;32(7):898–907.

    Article  Google Scholar 

  147. Junge K, et al. Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials. 2005;26(7):787–93.

    Article  CAS  Google Scholar 

  148. Elliott TS. An update on antimicrobial central venous catheters. J Hosp Infect. 2007;65 Suppl 2:34–8.

    Article  Google Scholar 

  149. Drake JM, Kestle JR, Tuli S. CSF shunts 50 years on—past, present and future. Childs Nerv Syst. 2000;16(10–11):800–4.

    Article  CAS  Google Scholar 

  150. Farber SH, et al. Cost analysis of antibiotic-impregnated catheters in the treatment of hydrocephalus in adult patients. World Neurosurg. 2010;74(4–5):528–31.

    Article  Google Scholar 

  151. Choux M, et al. Shunt implantation: reducing the incidence of shunt infection. J Neurosurg. 1992;77(6):875–80.

    Article  CAS  Google Scholar 

  152. Eymann R, et al. Clinical and economic consequences of antibiotic-impregnated cerebrospinal fluid shunt catheters. J Neurosurg Pediatr. 2008;1(6):444–50.

    Article  Google Scholar 

  153. Wong GK, et al. Antibiotics-impregnated ventricular catheter versus systemic antibiotics for prevention of nosocomial CSF and non-CSF infections: a prospective randomised clinical trial. J Neurol Neurosurg Psychiatry. 2010;81(10):1064–7.

    Article  Google Scholar 

  154. Parker SL, et al. Comparison of hospital cost and resource use associated with antibiotic-impregnated versus standard shunt catheters. Clin Neurosurg. 2011;58:122–5.

    Article  Google Scholar 

  155. Pye AD, et al. A review of dental implants and infection. J Hosp Infect. 2009;72(2):104–10.

    Article  CAS  Google Scholar 

  156. Jokstad A, et al. Quality of dental implants. Int Dent J. 2003;53(6 Suppl 2):409–43.

    Google Scholar 

  157. Sones AD. Complications with osseointegrated implants. J Prosthet Dent. 1989;62(5):581–5.

    Article  CAS  Google Scholar 

  158. Reid G, et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol. 2011;9(1):27–38.

    Article  CAS  Google Scholar 

  159. Walker C, Karpinia K. Rationale for use of antibiotics in periodontics. J Periodontol. 2002;73(10):1188–96.

    Article  Google Scholar 

  160. Williams RC, et al. Treatment of periodontitis by local administration of minocycline microspheres: a controlled trial. J Periodontol. 2001;72(11):1535–44.

    Article  CAS  Google Scholar 

  161. Gabriel MM, Weisbarth RE. Developing antimicrobial surfaces for silicone hydrogels. CIBA Medical; 2009.

    Google Scholar 

  162. Szczotka-Flynn LB, Pearlman E, Ghannoum M. Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review. Eye Contact Lens. 2010; 36(2):116–29.

    Article  Google Scholar 

  163. Nilsson SE, Montan PG. The annualized incidence of contact lens induced keratitis in Sweden and its relation to lens type and wear schedule: results of a 3-month prospective study. CLAO J. 1994;20(4):225–30.

    CAS  Google Scholar 

  164. Cheng KH, et al. Incidence of contact-lens-associated microbial keratitis and its related morbidity. Lancet. 1999;354(9174):181–5.

    Article  CAS  Google Scholar 

  165. Keay L, et al. Factors affecting the morbidity of contact lens-related microbial keratitis: a population study. Invest Ophthalmol Vis Sci. 2006;47(10):4302–8.

    Article  Google Scholar 

  166. Goldstein MH, Kowalski RP, Gordon YJ. Emerging fluoroquinolone resistance in bacterial keratitis: a 5-year review. Ophthalmology. 1999;106(7):1313–8.

    Article  CAS  Google Scholar 

  167. Zhu H, et al. Fimbrolide-coated antimicrobial lenses: their in vitro and in vivo effects. Optom Vis Sci. 2008;85(5):292–300.

    Article  Google Scholar 

  168. Willcox MD. New strategies to prevent Pseudomonas keratitis. Eye Contact Lens. 2007;33(6 Pt 2):401–3. discussion 410–1.

    Article  Google Scholar 

  169. Mathews SM, et al. Prevention of bacterial colonization of contact lenses with covalently attached selenium and effects on the rabbit cornea. Cornea. 2006;25(7):806–14.

    Article  Google Scholar 

  170. Larkin DF, Kilvington S, Easty DL. Contamination of contact lens storage cases by Acanthamoeba and bacteria. Br J Ophthalmol. 1990;74(3):133–5.

    Article  CAS  Google Scholar 

  171. Dantam J, Zhu H, Stapleton F. Biocidal efficacy of silver-impregnated contact lens storage cases in vitro. Invest Ophthalmol Vis Sci. 2011;52(1):51–7.

    Article  CAS  Google Scholar 

  172. Farber BF, et al. A novel antibiofilm technology for contact lens solutions. Ophthalmology. 1995;102(5):831–6.

    CAS  Google Scholar 

  173. Collard HR, Saint S, Matthay MA. Prevention of ventilator-associated pneumonia: an evidence-based systematic review. Ann Intern Med. 2003;138(6):494–501.

    Google Scholar 

  174. Pruitt B, Jacobs M. Best-practice interventions: how can you prevent ventilator-associated pneumonia? Nursing. 2006;36(2):36–41. quiz 41–2.

    Google Scholar 

  175. Ventilator-associated pneumonia (VAP) event. In: CDC, editor; 2011.

    Google Scholar 

  176. Tablan OC, Anderson LJ, Besser R, Bridges C, Hajjeh R. Guidelines for preventing health-care-associated pneumonia, 2003. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. Part 1. Issues on preventing health care associated pneumonia. In: C.f.D. Control, editor. Atlanta, GA; 2003.

    Google Scholar 

  177. Kollef MH, et al. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA. 2008;300(7):805–13.

    Article  CAS  Google Scholar 

  178. Free RH, et al. Biofilm formation on voice prostheses: influence of dairy products in vitro. Acta Otolaryngol. 2000;120(1):92–9.

    Article  CAS  Google Scholar 

  179. Mahieu HF, et al. Candida vegetations on silicone voice prostheses. Arch Otolaryngol Head Neck Surg. 1986;112(3):321–5.

    Article  CAS  Google Scholar 

  180. Rodrigues L, et al. Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. J Biomed Mater Res B Appl Biomater. 2007;81(2):358–70.

    Google Scholar 

  181. De Prijck K, et al. Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine. Mycopathologia. 2010;170(4):213–21.

    Article  CAS  Google Scholar 

  182. Reddy ST, et al. Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli. J Endourol. 2011;25(9):1547–52.

    Article  Google Scholar 

  183. Hooton TM, et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America Oxford Journals Medicine. Clin Infect Dis. 2009;50(5):625–63.

    Article  Google Scholar 

  184. Warren JW. Catheter-associated urinary tract infections. Infect Dis Clin North Am. 1997; 11(3):609–22.

    Article  CAS  Google Scholar 

  185. Stickler DJ, Jones GL, Russell AD. Control of encrustation and blockage of Foley catheters. Lancet. 2003;361(9367):1435–7.

    Article  CAS  Google Scholar 

  186. Lawrence EL, Turner IG. Materials for urinary catheters: a review of their history and development in the UK. Med Eng Phys. 2005;27(6):443–53.

    Article  CAS  Google Scholar 

  187. Horattas MC, et al. Changing concepts in long-term central venous access: catheter selection and cost savings. Am J Infect Control. 2001;29(1):32–40.

    Article  CAS  Google Scholar 

  188. Tal MG, Ni N. Selecting optimal hemodialysis catheters: material, design, advanced features, and preferences. Tech Vasc Interv Radiol. 2008;11(3):186–91.

    Article  Google Scholar 

  189. Sousa C, Henriques M, Oliveira R. Mini-review: antimicrobial central venous catheters—recent advances and strategies. Biofouling. 2011;27(6):609–20.

    Article  CAS  Google Scholar 

  190. Solomon DD, et al. An in vivo method for the evaluation of catheter thrombogenicity. J Biomed Mater Res. 1987;21(1):43–57.

    Article  CAS  Google Scholar 

  191. Sherertz RJ, et al. Contribution of vascular catheter material to the pathogenesis of infection: the enhanced risk of silicone in vivo. J Biomed Mater Res. 1995;29(5):635–45.

    Article  CAS  Google Scholar 

  192. Subbiahdoss G, et al. Microbial biofilm growth versus tissue integration: “the race for the surface” experimentally studied. Acta Biomater. 2009;5(5):1399–404.

    Article  CAS  Google Scholar 

  193. Roe D, et al. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61(4):869–76.

    Article  CAS  Google Scholar 

  194. Tambyah PA, Maki DG. The relationship between pyuria and infection in patients with indwelling urinary catheters: a prospective study of 761 patients. Arch Intern Med. 2000;160(5):673–7.

    Article  CAS  Google Scholar 

  195. Saint S, et al. The efficacy of silver alloy-coated urinary catheters in preventing urinary tract infection: a meta-analysis. Am J Med. 1998;105(3):236–41.

    Article  CAS  Google Scholar 

  196. Liedberg H. Catheter induced urethral inflammatory reaction and urinary tract infection. An experimental and clinical study. Scand J Urol Nephrol Suppl. 1989;124:1–43.

    CAS  Google Scholar 

  197. Liedberg H, Lundeberg T. Silver alloy coated catheters reduce catheter-associated bacteriuria. Br J Urol. 1990;65(4):379–81.

    Article  CAS  Google Scholar 

  198. Rosch W, Lugauer S. Catheter-associated infections in urology: possible use of silver-impregnated catheters and the Erlanger silver catheter. Infection. 1999;27 Suppl 1:S74–7.

    Article  Google Scholar 

  199. Maki DG, Tambyah PA. Engineering out the risk for infection with urinary catheters. Emerg Infect Dis. 2001;7(2):342–7.

    Article  CAS  Google Scholar 

  200. Schierholz JM, et al. The antimicrobial efficacy of a new central venous catheter with long-term broad-spectrum activity. J Antimicrob Chemother. 2000;46(1):45–50.

    Article  CAS  Google Scholar 

  201. Bullard KM, Dunn DL. Bloodstream and intravascular catheter infections. In: Holzheimer RG, Mannick JA, editors. Surgical treatment: evidence-based and problem-oriented. Munich: Zuckschwerdt; 2001.

    Google Scholar 

  202. Widmer AF. Central Venous Catheters. In: Seifert H, Jansen B, Farr BM, editors. Catheter-Related Infections. Marcel Dekker: New York; 1997.

    Google Scholar 

  203. McGee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med. 2003;348(12):1123–33.

    Article  Google Scholar 

  204. Frasca D, Dahyot-Fizelier C, Mimoz O. Prevention of central venous catheter-related infection in the intensive care unit. Crit Care. 2010;14(2):212.

    Article  Google Scholar 

  205. Maki DG, et al. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med. 1997; 127(4):257–66.

    CAS  Google Scholar 

  206. O’Grady NP, et al. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep. 2002;51((RR-10)):1–29.

    Google Scholar 

  207. Donlan RM. Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clin Infect Dis. 2011;52(8):1038–45.

    Article  Google Scholar 

  208. Schierholz JM, et al. Antimicrobial substances and effects on sessile bacteria. Zentralbl Bakteriol. 1999;289(2):165–77.

    Article  CAS  Google Scholar 

  209. Casey AL, et al. Antimicrobial central venous catheters in adults: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8(12):763–76.

    Article  CAS  Google Scholar 

  210. Boersma RS, et al. Thrombotic and infectious complications of central venous catheters in patients with hematological malignancies. Ann Oncol. 2008;19(3):433–42.

    Article  CAS  Google Scholar 

  211. Mohammad SF. Enhanced risk of infection with device-associated thrombi. ASAIO J. 2000;46(6):S63–8.

    Article  CAS  Google Scholar 

  212. Raad II, Hanna HA. Intravascular catheter-related infections: new horizons and recent advances. Arch Intern Med. 2002;162(8):871–8.

    Article  CAS  Google Scholar 

  213. Stillman RM, et al. Etiology of catheter-associated sepsis. Correlation with thrombogenicity. Arch Surg. 1977;112(12):1497–9.

    Article  CAS  Google Scholar 

  214. Diskin CJ, et al. Heparin and biofilm: is this the risk factor for catheter-related sepsis? Am J Kidney Dis. 2008;52(1):197–8. author reply 198.

    Article  Google Scholar 

  215. Baumgartner JN, Cooper SL. Influence of thrombus components in mediating Staphylococcus aureus adhesion to polyurethane surfaces. J Biomed Mater Res. 1998;40(4):660–70.

    Article  CAS  Google Scholar 

  216. Bos HM, et al. Evidence that bacteria prefer to adhere to thrombus. ASAIO J. 1996; 42(5):M881–4.

    Article  CAS  Google Scholar 

  217. van Rooden CJ, et al. Infectious complications of central venous catheters increase the risk of catheter-related thrombosis in hematology patients: a prospective study. J Clin Oncol. 2005;23(12):2655–60.

    Article  Google Scholar 

  218. Appelgren P, et al. Surface heparinization of central venous catheters reduces microbial colonization in vitro and in vivo: results from a prospective, randomized trial. Crit Care Med. 1996;24(9):1482–9.

    Article  CAS  Google Scholar 

  219. Tenke P, et al. Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. Int J Antimicrob Agents. 2004;23 Suppl 1:S67–74.

    Article  CAS  Google Scholar 

  220. Davey ME, O’Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64(4):847–67.

    Article  CAS  Google Scholar 

  221. Brunstedt MR, et al. Bacteria/blood/material interactions. I. Injected and preseeded slime-forming Staphylococcus epidermidis in flowing blood with biomaterials. J Biomed Mater Res. 1995;29(4):455–66.

    Article  CAS  Google Scholar 

  222. Kamal GD, et al. Reduced intravascular catheter infection by antibiotic bonding. A prospective, randomized, controlled trial. JAMA. 1991;265(18):2364–8.

    Article  CAS  Google Scholar 

  223. Kundu B, et al. Development of porous HAp and beta-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system. J Mater Sci Mater Med. 2010;21(11):2955–69.

    Article  CAS  Google Scholar 

  224. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.

    Article  CAS  Google Scholar 

  225. Berrington A, Gould FK. Use of antibiotic locks to treat colonized central venous catheters. J Antimicrob Chemother. 2001;48(5):597–603.

    Article  CAS  Google Scholar 

  226. Mermel LA, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1–45.

    Article  CAS  Google Scholar 

  227. Monson T, Kunin CM. Evaluation of a polymer-coated indwelling catheter in prevention of infection. J Urol. 1974;111(2):220–2.

    CAS  Google Scholar 

  228. Ahearn DG, et al. Effects of hydrogel/silver coatings on in vitro adhesion to catheters of bacteria associated with urinary tract infections. Curr Microbiol. 2000;41(2):120–5.

    Article  CAS  Google Scholar 

  229. Thibon P, et al. Randomized multi-centre trial of the effects of a catheter coated with hydrogel and silver salts on the incidence of hospital-acquired urinary tract infections. J Hosp Infect. 2000;45(2):117–24.

    Article  CAS  Google Scholar 

  230. Bologna RA, et al. Hydrogel/silver ion-coated urinary catheter reduces nosocomial urinary tract infection rates in intensive care unit patients: a multicenter study. Urology. 1999;54(6):982–7.

    Article  CAS  Google Scholar 

  231. Cormio L, et al. Bacterial adhesion to urethral catheters: role of coating materials and immersion in antibiotic solution. Eur Urol. 2001;40(3):354–8. discussion 359.

    Article  CAS  Google Scholar 

  232. Pugach JL, et al. Antibiotic hydrogel coated Foley catheters for prevention of urinary tract infection in a rabbit model. J Urol. 1999;162(3 Pt 1):883–7.

    Article  CAS  Google Scholar 

  233. Boks NP, et al. Bond-strengthening in staphylococcal adhesion to hydrophilic and hydrophobic surfaces using atomic force microscopy. Langmuir. 2008;24(22):12990–4.

    Article  CAS  Google Scholar 

  234. Boks NP, et al. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata. Colloids Surf B Biointerfaces. 2008;67(2):276–8.

    Article  CAS  Google Scholar 

  235. Boks NP, et al. Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces. J Colloid Interface Sci. 2009;331(1):60–4.

    Article  CAS  Google Scholar 

  236. Boks NP, et al. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology. 2008;154(Pt 10):3122–33.

    Article  CAS  Google Scholar 

  237. Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater. 2010;23(6):690–718.

    Article  CAS  Google Scholar 

  238. Chung KK, et al. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases. 2007;2(2):89–94.

    Article  CAS  Google Scholar 

  239. Tebbs SE, Elliott TS. Modification of central venous catheter polymers to prevent in vitro microbial colonisation. Eur J Clin Microbiol Infect Dis. 1994;13(2):111–7.

    Article  CAS  Google Scholar 

  240. Jansen B, et al. In-vitro efficacy of a central venous catheter (‘Hydrocath’) loaded with teicoplanin to prevent bacterial colonization. J Hosp Infect. 1992;22(2):93–107.

    Article  CAS  Google Scholar 

  241. Tamilvanan S, Venkateshan N, Ludwig A. The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Control Release. 2008;128(1):2–22.

    Article  CAS  Google Scholar 

  242. Sampath LA, et al. Infection resistance of surface modified catheters with either short-lived or prolonged activity. J Hosp Infect. 1995;30(3):201–10.

    Article  CAS  Google Scholar 

  243. Romano G, et al. Efficacy of a central venous catheter (Hydrocath) loaded with teicoplanin in preventing subcutaneous staphylococcal infection in the mouse. Zentralbl Bakteriol. 1993;279(3):426–33.

    Article  CAS  Google Scholar 

  244. Crocker IC, et al. A novel electrical method for the prevention of microbial colonization of intravascular cannulae. J Hosp Infect. 1992;22(1):7–17.

    Article  CAS  Google Scholar 

  245. Angiotech. Angiotech CVC with anti-microbial surface. 2011 [cited 22 Aug 2011]. http://www.angiotech.com/focus-markets/5fu-cvc/.

  246. Walz JM, et al. Anti-infective external coating of central venous catheters: a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization. Crit Care Med. 2010;38(11):2095–102.

    Article  CAS  Google Scholar 

  247. Halton KA, et al. Cost effectiveness of antimicrobial catheters in the intensive care unit: addressing uncertainty in the decision. Crit Care. 2009;13(2):R35.

    Article  Google Scholar 

  248. Raad I, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med. 1997; 127(4):267–74.

    CAS  Google Scholar 

  249. Johnson JR, Delavari P, Azar M. Activities of a nitrofurazone-containing urinary catheter and a silver hydrogel catheter against multidrug-resistant bacteria characteristic of catheter-associated urinary tract infection. Antimicrob Agents Chemother. 1999;43(12):2990–5.

    CAS  Google Scholar 

  250. Jansen B, et al. In vitro evaluation of the antimicrobial efficacy and biocompatibility of a silver-coated central venous catheter. J Biomater Appl. 1994;9(1):55–70.

    Article  CAS  Google Scholar 

  251. Shunmugaperumal T. Chapter 11: Polymer-based antimicrobial delivery carriers. In: Shunmugaperumal T, editor. Biofilm eradication and prevention: a pharmaceutical approach to medical device infections. Wiley: Hoboken; 2010. pp. 359–417.

    Google Scholar 

  252. Stevens KN, et al. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials. 2009;30(22):3682–90.

    Article  CAS  Google Scholar 

  253. Lansdown A. Silver in healthcare: its antimicrobial efficacy and safety in use. Issues in toxicology. Cambridge: RSC; 2010.

    Google Scholar 

  254. Schierholz JM, Beuth J, Pulverer G. Silver coating of medical devices for catheter-associated infections? Am J Med. 1999;107(1):101–2.

    Article  CAS  Google Scholar 

  255. Schierholz JM, Beuth J, Pulverer G. The quantity and duration of the antimicrobial efficacy of a chlorhexidine and silversulfadiazine impregnated catheter. J Hosp Infect. 1999;42(2):163–5.

    CAS  Google Scholar 

  256. Brun-Buisson C, et al. Prevention of intravascular catheter-related infection with newer chlorhexidine-silver sulfadiazine-coated catheters: a randomized controlled trial. Intensive Care Med. 2004;30(5):837–43.

    Article  Google Scholar 

  257. Rupp ME, et al. Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: a randomized, controlled trial. Ann Intern Med. 2005;143(8):570–80.

    CAS  Google Scholar 

  258. Tattawasart U, et al. Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J Hosp Infect. 1999;42(3):219–29.

    Article  CAS  Google Scholar 

  259. Trautner BW, Darouiche RO. Catheter-associated infections: pathogenesis affects prevention. Arch Intern Med. 2004;164(8):842–50.

    Article  Google Scholar 

  260. Terazawa E, et al. Severe anaphylactic reaction due to a chlorhexidine-impregnated central venous catheter. Anesthesiology. 1998;89(5):1296–8.

    Article  CAS  Google Scholar 

  261. Oda T, et al. Anaphylactic shock induced by an antiseptic-coated central venous [correction of nervous] catheter. Anesthesiology. 1997;87(5):1242–4.

    Article  CAS  Google Scholar 

  262. Russ BR, Maddern PJ. Anaphylactic reaction to chlorhexidine in urinary catheter lubricant. Anaesth Intensive Care. 1994;22(5):611–2.

    CAS  Google Scholar 

  263. Burlington B. FDA Public Health Notice: Potential Hypersensitivity Reactions to Chlorhexidine-Impregnated Medica Devices. US Food and Drug Administration: Silver Spring; 1998.

    Google Scholar 

  264. Ranucci M, et al. Impact of oligon central venous catheters on catheter colonization and catheter-related bloodstream infection. Crit Care Med. 2003;31(1):52–9.

    Article  CAS  Google Scholar 

  265. Darouiche RO. Anti-infective efficacy of silver-coated medical prostheses. Clin Infect Dis. 1999;29(6):1371–7. quiz 1378.

    Article  CAS  Google Scholar 

  266. Veenstra DL, et al. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA. 1999;281(3):261–7.

    Article  CAS  Google Scholar 

  267. Krein SL, et al. Use of central venous catheter-related bloodstream infection prevention practices by US hospitals. Mayo Clin Proc. 2007;82(6):672–8.

    Google Scholar 

  268. Safdar N. Antimicrobial catheters in the ICU: is the juice worth the squeeze? Crit Care. 2009;13(3):148.

    Article  Google Scholar 

  269. Timsit JF, et al. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA. 2009;301(12):1231–41.

    Article  CAS  Google Scholar 

  270. Mojibian H, et al. Initial clinical experience with a new heparin-coated chronic hemodialysis catheter. Hemodial Int. 2009;13(3):329–34.

    Article  Google Scholar 

  271. Tal MG. Comparison of recirculation percentage of the palindrome catheter and standard hemodialysis catheters in a swine model. J Vasc Interv Radiol. 2005;16(9):1237–40.

    Article  Google Scholar 

  272. Kakkos SK, et al. Effectiveness of a new tunneled catheter in preventing catheter malfunction: a comparative study. J Vasc Interv Radiol. 2008;19(7):1018–26.

    Article  Google Scholar 

  273. Spector M, et al. Clinical outcome of the Tal Palindrome chronic hemodialysis catheter: single institution experience. J Vasc Interv Radiol. 2008;19(10):1434–8.

    Article  Google Scholar 

  274. Mendelson M, Loin-Chen B, Finkelstein-Blond L, Kogan G, Hollinger I. Study of Introcan Safety IV Catheter (IVC) (B.Braun Medical Inc.) for the prevention of percutaneous injuries (PIs) in healthcare workers (HCWs). In: The Society for Healthcare Epidemiology of America; 2003.

    Google Scholar 

  275. Cowan MM, et al. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J Ind Microbiol Biotechnol. 2003;30(2):102–6.

    CAS  Google Scholar 

  276. Loertzer H, et al. Use of catheters with the AgION antimicrobial system in kidney transplant recipients to reduce infection risk. Transplant Proc. 2006;38(3):707–10.

    Article  CAS  Google Scholar 

  277. Galeano B, Korff E, Nicholson WL. Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl Environ Microbiol. 2003;69(7):4329–31.

    Article  CAS  Google Scholar 

  278. Chernecky C, Waller J. In vitro comparisons of two antimicrobial intravenous connectors. Clin Nurs Res. 2011;20(1):101–9.

    Article  Google Scholar 

  279. Maragakis LL, et al. Increased catheter-related bloodstream infection rates after the introduction of a new mechanical valve intravenous access port. Infect Control Hosp Epidemiol. 2006;27(1):67–70.

    Article  Google Scholar 

  280. Ryder M. Bacterial transfer through needleless connectors: a comparison of nine devices. In: SHEA, 2007. Center for Biofilm Engineering.

    Google Scholar 

  281. Bambauer R, et al. Large bore catheters with surface treatments versus untreated catheters for vascular access in hemodialysis. Artif Organs. 2004;28(7):604–10.

    Article  Google Scholar 

  282. Bambauer R, et al. Large bore catheters with surface treatments versus untreated catheters for blood access. J Vasc Access. 2001;2(3):97–105.

    CAS  Google Scholar 

  283. Kampf G, et al. Microbicidal activity of a new silver-containing polymer, SPI-ARGENT II. Antimicrob Agents Chemother. 1998;42(9):2440–2.

    CAS  Google Scholar 

  284. Bayston R, et al. Prevention of hydrocephalus shunt catheter colonisation in vitro by impregnation with antimicrobials. J Neurol Neurosurg Psychiatry. 1989;52(5):605–9.

    Article  CAS  Google Scholar 

  285. Bayston R, Lambert E. Duration of protective activity of cerebrospinal fluid shunt catheters impregnated with antimicrobial agents to prevent bacterial catheter-related infection. J Neurosurg. 1997;87(2):247–51.

    Article  CAS  Google Scholar 

  286. Zabramski JM, et al. Efficacy of antimicrobial-impregnated external ventricular drain catheters: a prospective, randomized, controlled trial. J Neurosurg. 2003;98(4):725–30.

    Article  Google Scholar 

  287. Galal I, El-Hindawy K. Impact of using triclosan-antibacterial sutures on incidence of surgical site infection. Am J Surg. 2011;202(2):133–8.

    Article  CAS  Google Scholar 

  288. Barie PS. Surgical site infections: epidemiology and prevention. Surg Infect (Larchmt). 2002;3 Suppl 1:S9–21.

    Article  Google Scholar 

  289. Leaper DJ, et al. Surgical site infection - a European perspective of incidence and economic burden. Int Wound J. 2004;1(4):247–73.

    Article  Google Scholar 

  290. Nichols RL. Preventing surgical site infections: a surgeon’s perspective. Emerg Infect Dis. 2001;7(2):220–4.

    Article  CAS  Google Scholar 

  291. Tajirian AL, Goldberg DJ. A review of sutures and other skin closure materials. J Cosmet Laser Ther. 2010;12(6):296–302.

    Article  Google Scholar 

  292. Hochberg J, Meyer KM, Marion MD. Suture choice and other methods of skin closure. Surg Clin North Am. 2009;89(3):627–41.

    Article  Google Scholar 

  293. US Food and Drug Administration. Triclosan: what consumers should know;2010.

    Google Scholar 

  294. Ford HR, et al. Intraoperative handling and wound healing: controlled clinical trial comparing coated VICRYL plus antibacterial suture (coated polyglactin 910 suture with triclosan) with coated VICRYL suture (coated polyglactin 910 suture). Surg Infect (Larchmt). 2005;6(3):313–21.

    Article  Google Scholar 

  295. Stadler S, Fleck T. Triclosan-coated sutures for the reduction of sternal wound infections? A retrospective observational analysis. Interact Cardiovasc Thorac Surg. 2011;13(3):296–9.

    Article  Google Scholar 

  296. Fleck T, et al. Triclosan-coated sutures for the reduction of sternal wound infections: economic considerations. Ann Thorac Surg. 2007;84(1):232–6.

    Article  Google Scholar 

  297. Deliaert AE, et al. The effect of triclosan-coated sutures in wound healing. A double blind randomised prospective pilot study. J Plast Reconstr Aesthet Surg. 2009;62(6):771–3.

    Article  Google Scholar 

  298. Stone J, Gruber TJ, Rozzelle CJ. Healthcare savings associated with reduced infection rates using antimicrobial suture wound closure for cerebrospinal fluid shunt procedures. Pediatr Neurosurg. 2010;46(1):19–24.

    Article  Google Scholar 

  299. Rozzelle CJ, Leonardo J, Li V. Antimicrobial suture wound closure for cerebrospinal fluid shunt surgery: a prospective, double-blinded, randomized controlled trial. J Neurosurg Pediatr. 2008;2(2):111–7.

    Article  Google Scholar 

  300. Mangram AJ, et al. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 1999;27(2):97–132. quiz 133–4; discussion 96.

    Article  CAS  Google Scholar 

  301. Gomez-Alonso A, et al. Study of the efficacy of Coated VICRYL Plus Antibacterial suture (coated Polyglactin 910 suture with Triclosan) in two animal models of general surgery. J Infect. 2007;54(1):82–8.

    Article  CAS  Google Scholar 

  302. Storch ML, Rothenburger SJ, Jacinto G. Experimental efficacy study of coated VICRYL plus antibacterial suture in guinea pigs challenged with Staphylococcus aureus. Surg Infect (Larchmt). 2004;5(3):281–8.

    Article  Google Scholar 

  303. Barbolt TA. Chemistry and safety of triclosan, and its use as an antimicrobial coating on Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 suture with triclosan). Surg Infect (Larchmt). 2002;3 Suppl 1:S45–53.

    Article  Google Scholar 

  304. Ho C, Spry C. Antibacterial sutures for wound closure after surgery: a review of the clinical effectiveness and long-term adverse effects. Canadian Agency for Drugs and Technologies in Health; 2008.

    Google Scholar 

  305. Caperelli L. PolyMedix presents data showing antimicrobial activity of sutures containing PolyCide [05/28/2011 09/19/2011]. http://www.reuters.com/article/2011/06/28/idUS109125+28-Jun-2011+BW20110628.

  306. Chu C-C, Von Fraunhofer JA, Greilser H, editors. Wound closure biomaterials and devices. Boca Raton: CRC; 1997.

    Google Scholar 

  307. Moncada S, Higgs EA. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 1995;9(13):1319–30.

    CAS  Google Scholar 

  308. Zhang H, et al. Nitric oxide-releasing fumed silica particles: synthesis, characterization, and biomedical application. J Am Chem Soc. 2003;125(17):5015–24.

    Article  CAS  Google Scholar 

  309. Rothrock AR, Donkers RL, Schoenfisch MH. Synthesis of nitric oxide-releasing gold nanoparticles. J Am Chem Soc. 2005;127(26):9362–3.

    Article  CAS  Google Scholar 

  310. Shin JH, Metzger SK, Schoenfisch MH. Synthesis of nitric oxide-releasing silica nanoparticles. J Am Chem Soc. 2007;129(15):4612–9.

    Article  CAS  Google Scholar 

  311. Hetrick EM, et al. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano. 2008;2(2):235–46.

    Article  CAS  Google Scholar 

  312. Friedman AJ, et al. Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide. 2008;19(1):12–20.

    Article  CAS  Google Scholar 

  313. Frost MC, Reynolds MM, Meyerhoff ME. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials. 2005;26(14):1685–93.

    Article  CAS  Google Scholar 

  314. Reynolds MM, et al. Tailored synthesis of nitric oxide-releasing polyurethanes using O-protected diazeniumdiolated chain extenders. J Mater Chem. 2010;20(15):3107–14.

    Article  CAS  Google Scholar 

  315. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37–8.

    Article  CAS  Google Scholar 

  316. Hufschmidt D, et al. Photocatalytic water treatment: fundamental knowledge required for its practical application. Water Sci Technol. 2004;49(4):135–40.

    CAS  Google Scholar 

  317. Mireles II JR, Toguchi A, Harshey RM. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol. 2001;183(20):5848–54.

    Article  CAS  Google Scholar 

  318. Rodrigues L, et al. Biosurfactants: potential applications in medicine. J Antimicrob Chemother. 2006;57(4):609–18.

    Article  CAS  Google Scholar 

  319. Hirota K, et al. Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microbiol Lett. 2005;248(1):37–45.

    Article  CAS  Google Scholar 

  320. Cho WK, Kong B, Choi IS. Highly efficient non-biofouling coating of zwitterionic polymers: poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide). Langmuir. 2007;23(10):5678–82.

    Article  CAS  Google Scholar 

  321. Cheng G, et al. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30:5234–40.

    Article  CAS  Google Scholar 

  322. Boman HG. Antibacterial peptides: basic facts and emerging concepts. J Intern Med. 2003;254(3):197–215.

    Article  CAS  Google Scholar 

  323. Thaker HD, et al. Synthetic mimics of antimicrobial peptides from triaryl scaffolds. J Med Chem. 2011;54(7):2241–54.

    Article  CAS  Google Scholar 

  324. Tew GN, et al. De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res. 2010;43(1):30–9.

    Article  CAS  Google Scholar 

  325. Som A, et al. Synthetic mimics of antimicrobial peptides. Biopolymers. 2008;90(2):83–93.

    Article  CAS  Google Scholar 

  326. Nagy E, Giefing C, von Gabain A. Anti-infective antibodies: a novel tool to prevent and treat nosocomial diseases. Expert Rev Anti Infect Ther. 2008;6(1):21–30.

    Article  CAS  Google Scholar 

  327. Pedron S et al. Combinatorial approach for fabrication of coatings to control bacterial adhesion. J Biomater Sci Polym Ed. 2011; doi:10.1163/092050611X589329.

    Google Scholar 

  328. Rosenberg LE, et al. Salicylic acid-based poly(anhydride esters) for control of biofilm formation in Salmonella enterica serovar Typhimurium. Lett Appl Microbiol. 2008;46(5):593–9.

    Article  CAS  Google Scholar 

  329. Tashiro T. Antibacterial and bacterium adsorbing macromolecules. Macromol Mater Eng. 2001;286(2):63–87.

    Article  CAS  Google Scholar 

  330. Lawson MC, Bowman CN, Anseth KS. Vancomycin derivative photopolymerized to titanium kills S. epidermidis. Clin Orthop Relat Res. 2007;461:96–105.

    Google Scholar 

  331. Lawson MC, et al. Inhibition of Staphylococcus epidermidis biofilms using polymerizable vancomycin derivatives. Clin Orthop Relat Res. 2010;468(8):2081–91.

    Article  Google Scholar 

  332. Lawson MC, et al. Polymerizable vancomycin derivatives for bactericidal biomaterial surface modification: structure-function evaluation. Biomacromolecules. 2009;10(8):2221–34.

    Article  CAS  Google Scholar 

  333. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7(2):277–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the University of Utah Technology Commercialization Office and from NIH grant EB01473 and EB00894.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Grainger .

Editor information

Editors and Affiliations

Glossary

Antimicrobial

A pharmaceutical agent used to mitigate, eradicate, and/or prevent microbial infections.

Biomaterial

Material, either synthetic or natural, that is suitable for contact with living tissue or bodily fluid as a part of a medical device.

Biomaterial Associated Infection (BAI)

A microbial infection on, around, or ­resulting from biomaterial contact with human tissues or fluids.

Biofilm

An interface-associated colony or colonies of microbes embedded in a complex extracellular matrix (ECM) that is composed primarily of polymers and proteins. Microbes in biofilms have additional resistance to antimicrobials due to reduced metabolism and the protective features of the ECM.

Hospital acquired infection (HAI)

Microbial infections without evidence of ­inoculation or incubation at before admission to a healthcare environment.

Implanted device

Medical device that is completely inserted or grafted into the body.

Medical Device (US FDA standard definition)

An instrument, apparatus, implement, ­machine, contrivance, implant, in vitro reagent, or other similar or related article, including a component part, or accessory which is:

Recognized in the official National Formulary, or the US Pharmacopoeia, or any supplement to them,

Intended for use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of disease, in man or other animals, or

Intended to affect the structure or any function of the body of man or other animals, and which does not achieve any of its primary intended purposes through chemical action within or on the body of man or other animals and which is not dependent upon being metabolized for the achievement of any of its primary intended purposes.

Microbe

A microorganism, especially bacteria, fungi, viruses, and protozoa, that causes infection.

Nosocomial

See Hospital-acquired infections.

Percutaneous Implants

A medical device that traverses the epithelial layer.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brooks, B.D., Brooks, A.E., Grainger, D.W. (2013). Antimicrobial Medical Devices in Preclinical Development and Clinical Use. In: Moriarty, T., Zaat, S., Busscher, H. (eds) Biomaterials Associated Infection. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1031-7_13

Download citation

Publish with us

Policies and ethics