Skip to main content

Mechanisms of Insulin Action

  • Chapter
  • First Online:
Atlas of Diabetes

Abstract

Insulin-like signaling integrates the storage and release of nutrients with somatic growth during development and in adult life. It is a feature of all metazoans, revealing a common mechanism used by animals to integrate metabolism and growth with environmental signals [1, 2]. Lower animals have a wide array of insulin-like peptides—seven in fruit flies and 38 in Caenorhabditis elegans—that bind apparently to a single insulin-like receptor tyrosine kinase to control metabolism, growth, reproduction, and longevity [3]. The human genome also encodes a superfamily of structurally related insulin-like peptides. Insulin, insulin-like growth factor 1 (IGF1), and insulin-like growth factor 2 (IGF2) activate a family of receptor tyrosine kinases [4]. However, the other structurally similar peptides, which are related to relaxin, are functionally distinct and activate G-protein-coupled receptors [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conlon JM: Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships. Peptides 2001, 22:1183–1193.

    PubMed  CAS  Google Scholar 

  2. Geminard C, Arquier N, Layalle S, et al.: Control of metabolism and growth through insulin-like peptides in drosophila. Diabetes 2006, 55(suppl 2):S5–S8.

    CAS  Google Scholar 

  3. Kenyon C: The plasticity of aging: insights from long-lived mutants. Cell 2005, 120:449–460.

    PubMed  CAS  Google Scholar 

  4. Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell 2000, 103:211–225.

    PubMed  CAS  Google Scholar 

  5. Sherwood OD: Relaxin’s physiological roles and other diverse actions. Endocr Rev 2004, 25:205–234.

    PubMed  CAS  Google Scholar 

  6. Wilkinson TN, Speed TP, Tregear GW, Bathgate RA: Evolution of the relaxin-like peptide family. BMC Evol Biol 2005, 5:14.

    PubMed  Google Scholar 

  7. Clemmons DR: Involvement of insulin-like growth factor-I in the control of glucose homeostasis. Curr Opin Pharmacol 2006, 6:620–625.

    PubMed  CAS  Google Scholar 

  8. Dunger DB, Ong KK, Sandhu MS: Serum insulin-like growth factor-I levels and potential risk of type 2 diabetes. Horm Res 2003, 60(suppl 3):131–135.

    PubMed  CAS  Google Scholar 

  9. Samani AA, Yakar S, LeRoith D, Brodt P: The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007, 28:20–47.

    PubMed  CAS  Google Scholar 

  10. Stumvoll M, Goldstein BJ, van Haeften TW: Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005, 365:1333–1346.

    PubMed  CAS  Google Scholar 

  11. Fajans SS, Bell GI, Polonsky KS: Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001, 345:971–980.

    PubMed  CAS  Google Scholar 

  12. Frayling TM, Evans JC, Bulman MP, et al.: beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 2001, 50(suppl 1):S94–S100.

    PubMed  CAS  Google Scholar 

  13. Froguel P, Velho G: Molecular genetics of maturity-onset diabetes of the young. Trends Endocrinol Metab 1999, 10:142–146.

    PubMed  CAS  Google Scholar 

  14. Nakayama M, Abiru N, Moriyama H, et al.: Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 2005, 435:220–223.

    PubMed  CAS  Google Scholar 

  15. Zhang L, Nakayama M, Eisenbarth GS: Insulin as an autoantigen in NOD/human diabetes. Curr Opin Immunol 2008, 20:111–118.

    PubMed  Google Scholar 

  16. Meier JJ, Bhushan A, Butler AE, et al.: Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 2005, 48:2221–2228.

    PubMed  CAS  Google Scholar 

  17. Monzavi R, Dreimane D, Geffner ME, et al.: Improvement in risk factors for metabolic syndrome and insulin resistance in overweight youth who are treated with lifestyle intervention. Pediatrics 2006, 117:e1111–e1118.

    PubMed  Google Scholar 

  18. Halban PA, Kahn SE, Lernmark A, Rhodes CJ: Gene and cell-replacement therapy in the treatment of type 1 diabetes: how high must the standards be set? Diabetes 2001, 50:2181–2191.

    PubMed  CAS  Google Scholar 

  19. DeFronzo RA: Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev 1997, 5:177–269.

    Google Scholar 

  20. Hotamisligil GS: Inflammation and metabolic disorders. Nature 2006, 444:860–867.

    PubMed  CAS  Google Scholar 

  21. Petersen KF, Dufour S, Savage DB, et al.: The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 2007, 104:12587–12594.

    PubMed  CAS  Google Scholar 

  22. Cline GW, Rothman DL, Magnusson I, et al.: 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest 1994, 94:2369–2376.

    PubMed  CAS  Google Scholar 

  23. Bruning JC, Michael MD, Winnay JN, et al.: A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1998, 2:559–569.

    PubMed  CAS  Google Scholar 

  24. Savkur RS, Philips AV, Cooper TA: Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 2001, 29:40–47.

    PubMed  CAS  Google Scholar 

  25. Burghes AH, Vaessin HE, de La Chapelle A: Genetics. The land between Mendelian and multifactorial inheritance. Science 2001, 293:2213–2214.

    Google Scholar 

  26. Semple RK, Sleigh A, Murgatroyd PR, et al.: Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest 2009, 119:315–322.

    PubMed  CAS  Google Scholar 

  27. Vaxillaire M, Veslot J, Dina C, et al.: Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 2008, 57:244–254.

    PubMed  CAS  Google Scholar 

  28. Nandi A, Kitamura T, Kahn CR, Accili D: Mouse models of insulin resistance. Physiol Rev 2004, 84:623–647.

    PubMed  CAS  Google Scholar 

  29. DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus. Med Clin North Am, 88:787–835, ix.

    PubMed  CAS  Google Scholar 

  30. Reaven GM: Pathophysiology of insulin resistance in human ­disease. Physiol Rev 1995, 75:473–486.

    PubMed  CAS  Google Scholar 

  31. Kitabchi AE, Nyenwe EA: Hyperglycemic crises in diabetes mellitus: diabetic ketoacidosis and hyperglycemic hyperosmolar state. Endocrinol Metab Clin North Am 2006, 35:725–751, viii.

    Google Scholar 

  32. Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005, 54:1615–1625.

    PubMed  CAS  Google Scholar 

  33. Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE: Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes 2004, 53:2079–2086.

    PubMed  CAS  Google Scholar 

  34. Cole GM, Frautschy SA: The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp Gerontol 2007, 42:10–21.

    PubMed  CAS  Google Scholar 

  35. Barbieri M, Rizzo MR, Manzella D, et al.: Glucose regulation and oxidative stress in healthy centenarians. Exp Gerontol 2003, 38:137–143.

    PubMed  CAS  Google Scholar 

  36. Andersen SL, Terry DF, Wilcox MA, et al.: Cancer in the oldest old. Mech Ageing Dev 2005, 126:263–267.

    PubMed  Google Scholar 

  37. Terry DF, Wilcox MA, McCormick MA, et al.: Lower all-cause, cardiovascular, and cancer mortality in centenarians’ offspring. J Am Geriatr Soc 2004, 52:2074–2076.

    PubMed  Google Scholar 

  38. Perls TT: The different paths to 100. Am J Clin Nutr 2006, 83:484S–487S.

    PubMed  CAS  Google Scholar 

  39. White MF: Regulating insulin signaling and beta-cell function through IRS proteins. Can J Physiol Pharmacol 2006, 84:725–737.

    PubMed  CAS  Google Scholar 

  40. Withers DJ, Gutierrez JS, Towery H, et al.: Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998, 391:900–904.

    PubMed  CAS  Google Scholar 

  41. De Meyts P: Insulin and its receptor: structure, function and evolution. Bio Essays 2004, 26:1351–1362.

    Google Scholar 

  42. Brzozowski AM, Dodson EJ, Dodson GG, et al.: Structural origins of the functional divergence of human insulin-like growth factor-I and insulin. Biochemistry 2002, 41:9389–9397.

    PubMed  CAS  Google Scholar 

  43. Lawrence MC, McKern NM, Ward CW: Insulin receptor structure and its implications for the IGF-1 receptor. Curr Opin Struct Biol 2007, 17:699–705.

    PubMed  CAS  Google Scholar 

  44. Ward CW, Lawrence MC, Streltsov VA, et al.: The insulin and EGF receptor structures: new insights into ligand-induced receptor activation. Trends Biochem Sci 2007, 32:129–137.

    PubMed  CAS  Google Scholar 

  45. McKern NM, Lawrence MC, Streltsov VA, et al.: Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 2006, 443:218–221.

    PubMed  CAS  Google Scholar 

  46. Kiselyov VV, Versteyhe S, Gauguin L, De Meyts P: Harmonic oscillator model of the insulin and IGF1 receptors’ allosteric binding and activation. Mol Syst Biol 2009, 5:243.

    PubMed  Google Scholar 

  47. White MF, Livingston JN, Backer JM, et al.: Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell 1988, 54:641–649.

    PubMed  CAS  Google Scholar 

  48. Eck MJ, Dhe-Paganon S, Trub T, et al.: Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 1996, 85:695–705.

    PubMed  CAS  Google Scholar 

  49. Yang Feng TL, Francke U, Ullrich A: Gene for human insulin receptor: localization to site on chromosome 19 involved in pre-B-cell leukemia. Science 1985, 228:728–731.

    Google Scholar 

  50. White MF, Shoelson SE, Keutmann H, Kahn CR: A cascade of tyrosine autophosphorylation in the beta-subunit activates the phosphotransferase of the insulin receptor. J Biol Chem 1988, 263:2969–2980.

    PubMed  CAS  Google Scholar 

  51. Rajagopalan M, Neidigh JL, McClain DA: Amino acid sequences Gly-Pro-Leu-Tyr and Asn-Pro-Glu-Tyr in the submembranous domain of the insulin receptor are required for normal endocytosis. J Biol Chem 1991, 266:23068–23073.

    PubMed  CAS  Google Scholar 

  52. Van Horn DJ, Myers MG Jr, Backer JM: Direct activation of the phosphatidylinositol 3’-kinase by the insulin receptor. J Biochem 1994, 269:29–32.

    Google Scholar 

  53. Mosthaf L, Grako K, Dull TJ, et al.: Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J 1990, 9:2409–2413.

    PubMed  CAS  Google Scholar 

  54. Moller DE, Yokota A, Caro JF, Flier JS: Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol Endocrinol 1989, 3:1263–1269.

    PubMed  CAS  Google Scholar 

  55. Goldstein BJ, Kahn CR: Analysis of mRNA heterogeneity by ribonuclease H mapping: application to the insulin receptor. Biochem Biophys Res Commun 1989, 159:664–669.

    PubMed  CAS  Google Scholar 

  56. Seino S, Bell GI: Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun 1989, 159:312–316.

    PubMed  CAS  Google Scholar 

  57. Barzilai N, Wang J, Massilon D, et al.: Leptin selectively decreases visceral adiposity and enhances insulin action. J Clin Invest 1997, 100:3105–3110.

    PubMed  CAS  Google Scholar 

  58. Benyoucef S, Surinya KH, Hadaschik D, Siddle K: Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J 2007, 403:603–613.

    PubMed  CAS  Google Scholar 

  59. Hubbard SR, Miller WT: Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 2007, 19:117–123.

    PubMed  CAS  Google Scholar 

  60. Hu J, Liu J, Ghirlando R, et al.: Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. Mol Cell 2003, 12:1379–1389.

    PubMed  CAS  Google Scholar 

  61. Hubbard SR: Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 1997, 16:5572–5581.

    PubMed  CAS  Google Scholar 

  62. Hubbard SR, Wei L, Ellis L, Hendrickson WA: Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 1994, 372:746–754.

    PubMed  CAS  Google Scholar 

  63. Songyang Z, Carraway KL 3rd, Eck MJ, et al.: Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 1995, 373:536–539.

    PubMed  CAS  Google Scholar 

  64. Songyang Z, Cantley LC: Recognition and specificity in protein tyrosine kinase-mediated signaling. Trends Biochem Sci 1995, 20:470–475.

    PubMed  CAS  Google Scholar 

  65. Shoelson SE, Chatterjee S, Chaudhuri M, White MF: YMXM motifs of IRS-1 define the substrate specificity of the insulin receptor kinase. Proc Natl Acad Sci U S A 1992, 89:2027–2031.

    PubMed  CAS  Google Scholar 

  66. Sawka-Verhelle D, Tartare-Deckert S, White MF, Van Obberghen E: Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J Biol Chem 1996, 271:5980–5983.

    PubMed  CAS  Google Scholar 

  67. Sawka-Verhelle D, Baron V, Mothe I, et al.: Tyr624 and Tyr628 in insulin receptor substrate-2 mediate its association with the insulin receptor. J Biol Chem 1997, 272:16414–16420.

    PubMed  CAS  Google Scholar 

  68. Wu J, Tseng YD, Xu CF, et al.: Structural and biochemical characterization of the KRLB region in insulin receptor substrate-2. Nat Struct Mol Biol 2008, 15:251–258.

    PubMed  Google Scholar 

  69. Rubinfeld H, Seger R: The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 2005, 31:151–174.

    PubMed  CAS  Google Scholar 

  70. Waskiewicz AJ, Johnson JC, Penn B, et al.: Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 1999, 19:1871–1880.

    PubMed  CAS  Google Scholar 

  71. Minich WB, Balasta ML, Goss DJ, Rhoads RE: Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc Natl Acad Sci U S A 1994, 91:7668–7672.

    PubMed  CAS  Google Scholar 

  72. Svitkin YV, Herdy B, Costa-Mattioli M, et al.: Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol 2005, 25:10556–10565.

    PubMed  CAS  Google Scholar 

  73. Cantley LC: The phosphoinositide 3-kinase pathway. Science 2002, 296:1655–1657.

    PubMed  CAS  Google Scholar 

  74. Backer JM, Myers MG Jr, Shoelson SE, et al.: Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 1992, 11:3469–3479.

    PubMed  CAS  Google Scholar 

  75. Farese RV, Sajan MP, Yang H, et al.: Muscle-specific knockout of PKC-lambda impairs glucose transport and induces metabolic and diabetic syndromes. J Clin Invest 2007, 117:2289–2301.

    PubMed  CAS  Google Scholar 

  76. Taniguchi CM, Tran TT, Kondo T, et al.: Phosphoinositide 3-kinase regulatory subunit p85alpha suppresses insulin action via positive regulation of PTEN. Proc Natl Acad Sci U S A 2006, 103:12093–12097.

    PubMed  CAS  Google Scholar 

  77. Taniguchi CM, Kondo T, Sajan M, et al.: Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell Metab 2006, 3:343–353.

    PubMed  CAS  Google Scholar 

  78. Manning BD, Cantley LC: AKT/PKB signaling: navigating downstream. Cell 2007, 129:1261–1274.

    PubMed  CAS  Google Scholar 

  79. Astrinidis A, Henske EP: Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene 2005, 24:7475–7481.

    PubMed  CAS  Google Scholar 

  80. Hu C, Pang S, Kong X, et al.: Molecular cloning and tissue distribution of PHAS-I, an intracellular target for insulin and growth factors. Proc Natl Acad Sci U S A 1994, 91:3730–3734.

    PubMed  CAS  Google Scholar 

  81. Jaeschke A, Hartkamp J, Saitoh M, et al.: Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol 2002, 159:217–224.

    PubMed  CAS  Google Scholar 

  82. Tee AR, Fingar DC, Manning BD, et al.: Tuberous sclerosis complex-1 and −2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A 2002, 99:13571–13576.

    PubMed  CAS  Google Scholar 

  83. Proud CG: Cell signaling. mTOR, unleashed. Science 2007, 318:926–927.

    Google Scholar 

  84. Pende M, Kozma SC, Jaquet M, et al.: Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 2000, 408:994–997.

    PubMed  CAS  Google Scholar 

  85. Isotani S, Hara K, Tokunaga C, et al.: Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem 1999, 274:34493–34498.

    PubMed  CAS  Google Scholar 

  86. Jacinto E, Lorberg A: TOR regulation of AGC kinases in yeast and mammals. Biochem J 2008, 410:19–37.

    PubMed  CAS  Google Scholar 

  87. Brunn GJ, Hudson CC, Sekulic A, et al.: Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997, 277:99–101.

    PubMed  CAS  Google Scholar 

  88. Tsukiyama-Kohara K, Poulin F, Kohara M, et al.: Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat Med 2001, 7:1128–1132.

    PubMed  CAS  Google Scholar 

  89. Farese RV, Sajan MP, Standaert ML: Atypical protein kinase C in insulin action and insulin resistance. Biochem Soc Trans 2005, 33:350–353.

    PubMed  CAS  Google Scholar 

  90. Ide T, Shimano H, Yahagi N, et al.: SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol 2004, 6:351–357.

    PubMed  CAS  Google Scholar 

  91. Czech MP: Molecular actions of insulin on glucose transport. Annu Rev Nutr 1995, 15:441–471.

    PubMed  CAS  Google Scholar 

  92. Huang S, Czech MP: The GLUT4 glucose transporter. Cell Metab 2007, 5:237–252.

    PubMed  CAS  Google Scholar 

  93. Pessin JE, Thurmond DC, Elmendorf JS, et al.: Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! Location! Location! J Biol Chem 1999, 274:2593–2596.

    Google Scholar 

  94. Khan AH, Pessin JE: Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 2002, 45:1475–1483.

    PubMed  CAS  Google Scholar 

  95. Farese RV: Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 2002, 283:E1–E11.

    PubMed  CAS  Google Scholar 

  96. Bandyopadhyay G, Standaert ML, Sajan MP, et al.: Protein kinase C-lambda knockout in embryonic stem cells and adipocytes impairs insulin-stimulated glucose transport. Mol Endocrinol 2004, 18:373–383.

    PubMed  CAS  Google Scholar 

  97. Kane S, Sano H, Liu SC, et al.: A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem 2002, 277:22115–22118.

    Google Scholar 

  98. Sakamoto K, Holman GD: Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 2008, 295:E29–E37.

    PubMed  CAS  Google Scholar 

  99. Sano H, Kane S, Sano E, et al.: Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 2003, 278:14599–14602.

    PubMed  CAS  Google Scholar 

  100. Miinea CP, Sano H, Kane S, et al.: AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 2005, 391(pt 1):87–93.

    PubMed  CAS  Google Scholar 

  101. Kotani K, Ogawa W, Matsumoto M, et al.: Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for akt activation in 3T3-L1 adipocytes. Mol Cell Biol 1998, 18:6971–6982.

    PubMed  CAS  Google Scholar 

  102. Hill MM, Clark SF, Tucker DF, et al.: A role for protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 1999, 19:7771–7781.

    PubMed  CAS  Google Scholar 

  103. Bandyopadhyay G, Kanoh Y, Sajan MP, et al.: Effects of adenoviral gene transfer of wild-type, constitutively active, and kinase-defective protein kinase C-lambda on insulin-stimulated glucose transport in L6 myotubes. Endocrinology 2000, 141:4120–4127.

    PubMed  CAS  Google Scholar 

  104. Zick Y: Role of Ser/Thr kinases in the uncoupling of insulin signaling. Int J Obes Relat Metab Disord 2003, 27(suppl 3):S56–S60.

    PubMed  CAS  Google Scholar 

  105. Gual P, Le Marchand-Brustel Y, Tanti JF: Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005, 87:99–109.

    PubMed  CAS  Google Scholar 

  106. Zick Y: Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005, 2005:e4.

    Google Scholar 

  107. Kido Y, Burks DJ, Withers D, et al.: Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 2000, 105:199–205.

    PubMed  CAS  Google Scholar 

  108. Haruta T, Uno T, Kawahara J, et al.: A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 2000, 14:783–794.

    PubMed  CAS  Google Scholar 

  109. Rui L, Fisher TL, Thomas J, White MF: Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 2001, 276:40362–40367.

    PubMed  CAS  Google Scholar 

  110. Ueki K, Kondo T, Kahn CR: Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 2004, 24:5434–5446.

    PubMed  CAS  Google Scholar 

  111. Liu F, Yang T, Wang B, et al.: Resistin induces insulin resistance, but does not affect glucose output in rat-derived hepatocytes. Acta Pharmacol Sin 2008, 29:98–104.

    PubMed  Google Scholar 

  112. Palanivel R, Maida A, Liu Y, Sweeney G: Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin. Diabetologia 2006, 49:183–190.

    PubMed  CAS  Google Scholar 

  113. Rui L, Yuan M, Frantz D, et al.: SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 2002, 277:42394–42398.

    PubMed  CAS  Google Scholar 

  114. Ueki K, Kondo T, Tseng YH, Kahn CR: Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci U S A 2004, 101:10422–10427.

    PubMed  CAS  Google Scholar 

  115. Kawaguchi T, Yoshida T, Harada M, et al.: Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol 2004, 165:1499–1508.

    PubMed  CAS  Google Scholar 

  116. Brown MS, Goldstein JL: Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 2008, 7:95–96.

    PubMed  CAS  Google Scholar 

  117. Postic C, Girard J: Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008, 118:829–838.

    PubMed  CAS  Google Scholar 

  118. Cheng Z, Guo S, Copps K, et al.: Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med 2009, 15:1307–1311.

    PubMed  CAS  Google Scholar 

  119. Kushner JA, Ye J, Schubert M, et al.: Pdx1 restores beta cell function in Irs2 knockout mice. J Clin Invest 2002, 109:1193–1201.

    PubMed  CAS  Google Scholar 

  120. Jonsson J, Carlsson L, Edlund T, Edlund H: Insulin-promoter-factor 1 is required for pancreas developement in mice. Nature 1994, 371:606–609.

    PubMed  CAS  Google Scholar 

  121. Stoffers DA, Zinkin NT, Stanojevic V, et al.: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997, 15:106–110.

    PubMed  CAS  Google Scholar 

  122. Kitamura T, Nakae J, Kitamura Y, et al.: The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 2002, 110:1839–1847.

    PubMed  CAS  Google Scholar 

  123. Hennige AM, Burks DJ, Ozcan U, et al.: Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 2003 112:1521–1532.

    PubMed  CAS  Google Scholar 

  124. Kushner JA, Simpson L, Wartschow LM, et al.: Phosphatase and tensin homolog regulation of islet growth and glucose ­homeostasis. J Biol Chem 2005, 280:39388–39393.

    PubMed  CAS  Google Scholar 

  125. Weir GC, Bonner-Weir S: A dominant role for glucose in beta cell compensation of insulin resistance. J Clin Invest 2007, 117:81–83.

    PubMed  CAS  Google Scholar 

  126. Terauchi Y, Takamoto I, Kubota N, et al.: Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 2007, 117:246–257.

    PubMed  CAS  Google Scholar 

  127. Park S, Dong X, Fisher TL, et al.: Exendin-4 uses irs2 signaling to mediate pancreatic Beta cell growth and function. J Biol Chem 2006, 281:1159–1168.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris F. White PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

White, M.F., White, M.F. (2012). Mechanisms of Insulin Action. In: Skyler, J. (eds) Atlas of Diabetes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1028-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1028-7_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1027-0

  • Online ISBN: 978-1-4614-1028-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics