Skip to main content

Mechanisms of Hyperglycemic Damage in Diabetes

  • Chapter
  • First Online:
Atlas of Diabetes

Abstract

All forms of diabetes are characterized by hyperglycemia, a relative or absolute lack of insulin action, and the development of diabetes-specific pathology in the retina, renal glomerulus, and peripheral nerve. Diabetes is also associated with accelerated atherosclerotic disease, which affects arteries that supply the heart, brain, and lower extremities. As a consequence of its disease-specific pathology, in the developed world diabetes mellitus is now the leading cause of new blindness in working-age people and the leading cause of end-stage renal disease (ESRD). More than 60% of diabetic patients are affected by neuropathy, which includes distal symmetrical polyneuropathy (DSPN), mononeuropathies, and a variety of autonomic neuropathies that cause erectile dysfunction, urinary incontinence, gastroparesis, and nocturnal diarrhea. Diabetic accelerated lower extremity arterial disease in conjunction with neuropathy accounts for more than 50% of all nontraumatic amputations in the USA [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giacco F, Brownlee M: Textbook of Diabetes, 4th edn. Hoboken, NJ: Wiley; 2010.

    Google Scholar 

  2. Norhammar A, Tenerz A, Nilsson G, et al.: Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet 2002, 359:2140–2144.

    Article  PubMed  CAS  Google Scholar 

  3. Abaci A, Ogˇuzhan A, Kahraman S, et al.: Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 1999, 99:2239–2242.

    PubMed  CAS  Google Scholar 

  4. Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993, 329:977–986.

    Article  Google Scholar 

  5. UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352:837–853.

    Article  Google Scholar 

  6. Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005, 54:1615–1625.

    Article  PubMed  CAS  Google Scholar 

  7. Kaiser N, Sasson S, Feener EP, et al.: Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 1993, 42:80–89.

    Article  PubMed  CAS  Google Scholar 

  8. Ramasamy R, Goldberg IJ: Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res 2010, 106:1449–1458.

    Article  PubMed  CAS  Google Scholar 

  9. Bohren KM, Grimshaw CE, Gabbay KH: Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. J Biol Chem 1992, 267:20965–20970.

    Google Scholar 

  10. Zhang JZ, Gao L, Widness M, et al.: Captopril inhibits glucose accumulation in retinal cells in diabetes. Invest Ophthalmol Vis Sci 2003, 44:4001–4005.

    Article  PubMed  Google Scholar 

  11. Inagaki K, Miwa I, Okuda J: Affinity purification and glucose specificity of aldose reductase from bovine lens.  Arch Biochem Biophys  1982, 216:337–344.

    Article  PubMed  CAS  Google Scholar 

  12. Bunn HF, Higgins PJ: Reaction of monosaccharides with proteins: possible evolutionary significance. Science 1981, 213:222–224.

    Article  PubMed  CAS  Google Scholar 

  13. Ahmed N, Thornalley PJ: Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab 2007, 9:233–245.

    Article  PubMed  CAS  Google Scholar 

  14. Thangarajah H, Yao D, Chang EI, et al.: The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A 2009, 106:13505–13510.

    Article  PubMed  CAS  Google Scholar 

  15. Ceradini DJ, Yao D, Grogan RH, et al.: Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 2008, 283:10930–10938.

    Article  PubMed  CAS  Google Scholar 

  16. Geraldes P, King GL: Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010, 106:1319–1331.

    Article  PubMed  CAS  Google Scholar 

  17. Brownlee M: Biochemistry and molecular cell biology of ­diabetic complications. Nature 2001, 414:813–820.

    Article  PubMed  CAS  Google Scholar 

  18. Du XL, Edelstein D, Dimmeler S, et al.: Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 2001, 108:1341–1348.

    PubMed  CAS  Google Scholar 

  19. Nishikawa T, Edelstein D, Du XL, et al.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404:787–790.

    Article  PubMed  CAS  Google Scholar 

  20. Du X, Matsumura T, Edelstein D, et al.: Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003, 112:1049–1057.

    PubMed  CAS  Google Scholar 

  21. Yao D, Brownlee M: Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced ­glycation end products (RAGE) and RAGE ligands. Diabetes 2010, 59:249–255.

    Article  PubMed  CAS  Google Scholar 

  22. Hanley AJ, Williams K, Stern MP, Haffner SM: Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care 2002, 25:1177–1184.

    Article  PubMed  Google Scholar 

  23. Du X, Edelstein D, Obici S, et al.: Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 2006, 116:1071–1080.

    Article  PubMed  CAS  Google Scholar 

  24. Seaquist ER, Goetz FC, Rich S, Barbosa J: Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989, 320:1161–1165.

    Google Scholar 

  25. Quinn M, Angelico MC, Warram JH, Krolewski AS: Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 1996, 39:940–945.

    Article  PubMed  CAS  Google Scholar 

  26. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group: Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 2000, 342: 381–389.

    Google Scholar 

  27. Brasacchio D, Okabe J, Tikellis C, et al.: Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that co-exist on the lysine tail. Diabetes 2009, 58:1229–1236.

    Article  PubMed  CAS  Google Scholar 

  28. Miao F, Smith DD, Zhang L, et al.: Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 demethylation: an epigenetic study in diabetes. Diabetes 2008, 57:3189–3198.

    Article  PubMed  CAS  Google Scholar 

  29. Reddy MA, Villeneuve LM, Wang M, et al.: Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. Circ Res 2008, 103:615–623.

    Article  PubMed  CAS  Google Scholar 

  30. Villeneuve LM, Reddy MA, Lanting LL, et al.: Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci U S A 2008, 105:9047–9052.

    Article  PubMed  CAS  Google Scholar 

  31. El-Osta A, Brasacchio D, Yao D, et al.: Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008, 205:2409–2417.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Giacco PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giacco, F., Brownlee, M. (2012). Mechanisms of Hyperglycemic Damage in Diabetes. In: Skyler, J. (eds) Atlas of Diabetes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1028-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1028-7_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1027-0

  • Online ISBN: 978-1-4614-1028-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics