Regulation of Insulin Secretion and Islet Cell Function



The β cells of the islets of Langerhans are the only cells in the body that produce a ­meaningful quantity of insulin, a hormone that has evolved to be essential for life, exerting critical control over carbohydrate, fat, and protein metabolism. Islets are scattered throughout the pancreas; although they vary in size, they typically contain about 1,000 cells, of which approximately 70% are β cells. A human pancreas contains about one million islets, which comprise only about 2% of the mass of the pancreas. Insulin is released into the portal vein, which means the liver is exposed to particularly high concentrations of insulin.


Insulin Secretion Vasoactive Intestinal Polypeptide Glucagon Secretion Pancreatic Development Insulin Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Habener JF, Kemp DM, Thomas MK: Minireview: transcriptional regulation in pancreatic development. Endocrinology 2005, 146:1025–1034.PubMedCrossRefGoogle Scholar
  2. 2.
    Olbrot M, Rud J, Moss LG, Sharma A: Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci U S A 2002, 99:6737–6742.PubMedCrossRefGoogle Scholar
  3. 3.
    Kawaguchi Y, Cooper B, Gannon M, et al.: The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 2002, 32:128–134.PubMedCrossRefGoogle Scholar
  4. 4.
    Edlund H: Transcribing pancreas. Diabetes 1998, 47:1817–1823.PubMedCrossRefGoogle Scholar
  5. 5.
    Bonner-Weir S, Orci L: New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes 1982, 31:883–939.PubMedCrossRefGoogle Scholar
  6. 6.
    Weir GC, Bonner-Weir S: Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J Clin Invest 1990, 85:983–987.PubMedCrossRefGoogle Scholar
  7. 7.
    Bonner-Weir S, O’Brien TD: Islets in type 2 diabetes: in honor of Dr. Robert C. Turner. Diabetes 2008, 57:2899–2904.Google Scholar
  8. 8.
    Orci L: The insulin factory: a tour of the plant surroundings and a visit to the assembly line. Diabetologia 1985, 28:528–546.PubMedCrossRefGoogle Scholar
  9. 9.
    Guest PC, Bailyes EM, Rutherford NG, Hutton JC: Insulin secretory granule biogenesis. Biochem J 1991, 274:73–78.PubMedGoogle Scholar
  10. 10.
    Inada A, Nienaber C, Katsuta H, et al.: Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A 2008, 105:19915–19919.PubMedCrossRefGoogle Scholar
  11. 11.
    Bonner-Weir S, Weir GC: New sources of pancreatic beta-cells. Nat Biotechnol 2005, 23:857–861.PubMedCrossRefGoogle Scholar
  12. 12.
    Rankin MM, Kushner JA: Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes 2009, 58:1365–1372.PubMedCrossRefGoogle Scholar
  13. 13.
    Finegood DT, Scaglia L, Bonner-Weir S: (Perspective) Dynamics of B-cell mass in the growing rat pancreas: estimation with a simple mathematical model. Diabetes 1995, 44:249–256PubMedCrossRefGoogle Scholar
  14. 14.
    Sander M, German MS: The B cell transcription factors and development of the pancreas. J Mol Med 1997, 75:327–340.PubMedCrossRefGoogle Scholar
  15. 15.
    Rhodes CJ, Alarcon C: What beta cell defect could lead to hyperproinsulinemia in NIDDM? Diabetes 1994, 43:511–517.PubMedCrossRefGoogle Scholar
  16. 16.
    Rhodes CJ: Processing of the insulin molecule. In Diabetes Mellitus: A Fundamental and Clinical Text, edn 3. Edited by LeRoith D, Taylor SI, Olefsky JM. Philadelphia: Lippincott Williams & Wilkins; 2004:27–50.Google Scholar
  17. 17.
    Easom RA: CaM kinase II: a protein kinase with extraordinary talents germane to insulin exocytosis. Diabetes 1999, 48: 675–684.PubMedCrossRefGoogle Scholar
  18. 18.
    Leahy JL, Cooper HE, Deal DA, Weir GC: Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J Clin Invest 1986, 77:908–915.Google Scholar
  19. 19.
    DeVos A, Heimberg H, Quartier E, et al.: Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest 1995, 96:2489–2495.CrossRefGoogle Scholar
  20. 20.
    Matschinsky FM: A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 1996, 45:223–241.PubMedCrossRefGoogle Scholar
  21. 21.
    Eto K, Tsubamoto Y, Terauchi Y, et al.: Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 1999, 283: 981–985.PubMedCrossRefGoogle Scholar
  22. 22.
    Henquin JC: Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 2000, 49:1751–1760.PubMedCrossRefGoogle Scholar
  23. 23.
    Lovshin JA, Drucker DJ: Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 2009, 5:262–269.PubMedCrossRefGoogle Scholar
  24. 24.
    Mears D, Atwater I: Electrophysiology of the pancreatic b-cell. In Diabetes Mellitus: A Fundamental and Clinical Text, edn 2. Edited by LeRoith D, Taylor SI, Olefsky JM. Philadelphia: Lippincott Williams & Wilkins; 2000:47–60.Google Scholar
  25. 25.
    Gilon P, Shepherd RM, Henquin JC: Oscillations of secretion driven by oscillations of cytoplasmic Ca2 as evidenced in single pancreatic islets. J Biol Chem 1993, 268: 22265–22268.PubMedGoogle Scholar
  26. 26.
    Porksen N, Munn S, Steers J, et al.: Effects of glucose ingestion versus infusion on pulsatile insulin secretion. Diabetes 1996, 45:1317–1323.PubMedCrossRefGoogle Scholar
  27. 27.
    McGarry JD, Dobbins RL: Fatty acids, lipotoxicity and insulin secretion. Diabetolgia 1999, 42:128–138.CrossRefGoogle Scholar
  28. 28.
    Prentki M, Corkey BE: Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 1996, 45:273–283.PubMedCrossRefGoogle Scholar
  29. 29.
    Holz GG, Chepurny OG, Schwede F: Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 2008, 20:10–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Brunzell JD, Robertson RP, Lerner RL, et al.: Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. J Clin Endocrinol Metab 1976, 42:222–229.PubMedCrossRefGoogle Scholar
  31. 31.
    Ward WK, Bolgiano DC, McKnight B, et al.: Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest 1984, 74:1318–1328.PubMedCrossRefGoogle Scholar
  32. 32.
    Mitrakou A, Kelley D, Mokan M, et al.: Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 1992, 326:22–29.PubMedCrossRefGoogle Scholar
  33. 33.
    Hull RL, Westermark GT, Westermark P, Kahn SE: Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 2004, 89:3629–3643.PubMedCrossRefGoogle Scholar
  34. 34.
    Murphy R, Ellard S, Hattersley AT: Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab 2008, 4: 200–213.PubMedCrossRefGoogle Scholar
  35. 35.
    Matschinsky FM: Assessing the potential of glucokinase activators in diabetes therapy. Nat Rev Drug Discov 2009, 8:399–416.PubMedCrossRefGoogle Scholar
  36. 36.
    Florez JC: Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 2008, 51:1100–1110.PubMedCrossRefGoogle Scholar
  37. 37.
    Jonas JC, Sharma A, Hasenkamp W, et al.: Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem 1999, 274:14112–14121.PubMedCrossRefGoogle Scholar
  38. 38.
    Weir GC, Laybutt DR, Kaneto H, et al.: Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 2001, 50(Suppl 1):S154–S159.PubMedCrossRefGoogle Scholar
  39. 39.
    Weir GC, Bonner-Weir S: Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 2004, 53(Suppl 3):S16–S21.PubMedCrossRefGoogle Scholar
  40. 40.
    Tabak AG, Jokela M, Akbaraly TN, et al.: Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 2009, 373:2215–2221.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Gordon C. Weir
    • 1
  • Susan Bonner-Weir
    • 1
  • Arun Sharma
    • 1
  1. 1.Islet Cell and Regenerative Biology Department, Joslin Diabetes CenterHarvard Medical SchoolBostonUSA

Personalised recommendations