Selenium pp 109-123 | Cite as

Selenoproteins and Selenoproteomes

  • Vadim N. Gladyshev


Recent progress in high-throughput sequencing and analysis allowed efficient identification of selenocysteine-containing proteins in sequence databases, including full sets of selenoproteins in organisms, designated selenoproteomes. Information is currently available on selenoproteomes from all major model organisms as well as humans, which have 25 selenoprotein genes. This chapter gives an overview of selenoproteins at the level of individual proteins, protein families, and entire selenoproteomes. Comparative genomic analyses of selenoproteins offer exciting avenues for studying selenoprotein function and evolution, provide insights into the biological functions of the trace element selenium, and even allow addressing important biological questions unrelated to selenium.


Protein Disulfide Isomerase SECIS Element Redox Catalysis Thalassiosira Pseudonana Selenoprotein Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Institutes of Health grants.


  1. 1.
    Wolfe MD, Ahmed F, Lacourciere GM et al (2004) J Biol Chem 279:1801PubMedCrossRefGoogle Scholar
  2. 2.
    Dilworth GL (1982) Arch Biochem Biophys 219:30PubMedCrossRefGoogle Scholar
  3. 3.
    Gladyshev VN, Khangulov SV, Stadtman TC (1994) Proc Natl Acad Sci USA 91:232PubMedCrossRefGoogle Scholar
  4. 4.
    Self WT, Stadtman TC (2000) Proc Natl Acad Sci USA 97:7208PubMedCrossRefGoogle Scholar
  5. 5.
    Ballihaut G, Mounicou S, Lobinski R (2007) Anal Bioanal Chem 388:585PubMedCrossRefGoogle Scholar
  6. 6.
    Behne D, Kyriakopoulos A, Meinhold H et al (1990) Biochem Biophys Res Commun 173:1143PubMedCrossRefGoogle Scholar
  7. 7.
    Gladyshev VN, Jeang KT, Wootton JC et al (1998) J Biol Chem 273:8910PubMedCrossRefGoogle Scholar
  8. 8.
    Novoselov SV, Rao M, Onoshko NV et al (2002) EMBO J 21:3681PubMedCrossRefGoogle Scholar
  9. 9.
    Kryukov GV, Kryukov VM, Gladyshev VN (1999) J Biol Chem 274:33888PubMedCrossRefGoogle Scholar
  10. 10.
    Lescure A, Gautheret D, Carbon P et al (1999) J Biol Chem 274:38147PubMedCrossRefGoogle Scholar
  11. 11.
    Gladyshev VN, Kryukov GV, Fomenko DE et al (2004) Annu Rev Nutr 24:579PubMedCrossRefGoogle Scholar
  12. 12.
    Martin-Romero FJ, Kryukov GV, Lobanov AV et al (2001) J Biol Chem 276:29798PubMedCrossRefGoogle Scholar
  13. 13.
    Castellano S, Morozova N, Morey M et al (2001) EMBO Rep 2:697PubMedCrossRefGoogle Scholar
  14. 14.
    Kryukov GV, Castellano S, Novoselov SV et al (2003) Science 300:1439PubMedCrossRefGoogle Scholar
  15. 15.
    Kryukov GV, Gladyshev VN (2004) EMBO Rep 5:538PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang Y, Fomenko DE, Gladyshev VN (2005) Genome Biol 6:R37PubMedCrossRefGoogle Scholar
  17. 17.
    Rotruck JT, Pope AL, Ganther HE et al (1973) Science 179:588PubMedCrossRefGoogle Scholar
  18. 18.
    Seiler A, Schneider M, Förster H et al (2008) Cell Metab 8:237PubMedCrossRefGoogle Scholar
  19. 19.
    Ursini F, Heim S, Kiess M et al (1999) Science 285:1393PubMedCrossRefGoogle Scholar
  20. 20.
    Olson GE, Whitin JC, Hil KE et al (2010) Am J Physiol Renal Physiol 298:F1244CrossRefGoogle Scholar
  21. 21.
    Gromer S, Wissing J, Behne D et al (1998) Biochem J 332:591PubMedGoogle Scholar
  22. 22.
    Sun QA, Kirnarsky L, Sherman S et al (2001) Proc Natl Acad Sci USA 98:3673PubMedCrossRefGoogle Scholar
  23. 23.
    Sandalova T, Zhong L, Lindqvist Y et al (2001) Proc Natl Acad Sci USA 98:9533PubMedCrossRefGoogle Scholar
  24. 24.
    Sun QA, Wu Y, Zappacosta F et al (1999) J Biol Chem 274:24522PubMedCrossRefGoogle Scholar
  25. 25.
    Arner ES, Holmgren A (2000) Eur J Biochem 267:6102PubMedCrossRefGoogle Scholar
  26. 26.
    Sun QA, Zappacosta F, Factor V et al (2001) J Biol Chem 276:3106PubMedCrossRefGoogle Scholar
  27. 27.
    Rundlof AK, Janard M, Miranda-Vizuete A et al (2004) Free Radic Biol Med 36:641PubMedCrossRefGoogle Scholar
  28. 28.
    Su D, Gladyshev VN (2004) Biochemistry 43:12177PubMedCrossRefGoogle Scholar
  29. 29.
    Su D, Novoselov SV, Sun QA et al (2005) J Biol Chem 280:26491PubMedCrossRefGoogle Scholar
  30. 30.
    Conrad M, Jakupoglu C, Moreno SG et al (2004) Mol Cell Biol 24:9414PubMedCrossRefGoogle Scholar
  31. 31.
    Jakupoglu C, Przemeck GK, Schneider M et al (2005) Mol Cell Biol 25:1980PubMedCrossRefGoogle Scholar
  32. 32.
    Kryukov GV, Kumar RA, Koc A et al (2002) Proc Natl Acad Sci USA 99:4245PubMedCrossRefGoogle Scholar
  33. 33.
    Kim HY, Gladyshev VN (2004) Mol Biol Cell 15:1055PubMedCrossRefGoogle Scholar
  34. 34.
    Fomenko DE, Novoselov SV, Natarajan SK et al (2009) J Biol Chem 284:5986PubMedCrossRefGoogle Scholar
  35. 35.
    Korotkov KV, Kumaraswamy E, Zhou Y et al (2001) J Biol Chem 276:15330PubMedCrossRefGoogle Scholar
  36. 36.
    Kumaraswamy E, Malykh A, Korotkov KV et al (2000) J Biol Chem 275:35540PubMedCrossRefGoogle Scholar
  37. 37.
    Ferguson AD, Labunskyy VM, Fomenko DE et al (2005) J Biol Chem 281:3536PubMedCrossRefGoogle Scholar
  38. 38.
    Stadtman TC (1996) Annu Rev Biochem 65:83PubMedCrossRefGoogle Scholar
  39. 39.
    Xu XM, Carlson BA, Irons R et al (2007) Biochem J 404:115PubMedCrossRefGoogle Scholar
  40. 40.
    Burk RF, Hill KE (2005) Annu Rev Nutr 25:215PubMedCrossRefGoogle Scholar
  41. 41.
    Lobanov AV, Hatfield DL, Gladyshev VN (2008) Genome Biol 9:R62PubMedCrossRefGoogle Scholar
  42. 42.
    Hill KE, Zhou J, McMahan WJ et al (2003) J Biol Chem 278:13640PubMedCrossRefGoogle Scholar
  43. 43.
    Schomburg L, Schweizer U, Holtmann B et al (2003) Biochem J 370:397PubMedCrossRefGoogle Scholar
  44. 44.
    Vendeland SC, Beilstein MA, Yeh JY et al (1995) Proc Natl Acad Sci USA 92:8749PubMedCrossRefGoogle Scholar
  45. 45.
    Korotkov KV, Novoselov SV, Hatfield DL et al (2002) Mol Cell Biol 22:1402PubMedCrossRefGoogle Scholar
  46. 46.
    Ye Y, Shibata Y, Yun C et al (2004) Nature 429:841PubMedCrossRefGoogle Scholar
  47. 47.
    Verma S, Hoffmann FW, Kumar M et al (2011) J Immunol 186:2127PubMedCrossRefGoogle Scholar
  48. 48.
    Moghadaszadeh B, Petit N, Jaillard C (2001) Nat Genet 29:17PubMedCrossRefGoogle Scholar
  49. 49.
    Jurynec MJ, Xia R, Mackrill JJ et al (2008) Proc Natl Acad Sci USA 105:12485PubMedCrossRefGoogle Scholar
  50. 50.
    Obata T, Shiraiwa Y (2005) J Biol Chem 280:18462PubMedCrossRefGoogle Scholar
  51. 51.
    Castellano S, Novoselov SV, Kryukov GV et al (2004) EMBO Rep 5:71PubMedCrossRefGoogle Scholar
  52. 52.
    Castellano S, Lobanov AV, Chapple C et al (2005) Proc Natl Acad Sci USA 102:16188PubMedCrossRefGoogle Scholar
  53. 53.
    Novoselov SV, Hua D, Lobanov AV et al (2005) Biochem J 394:575Google Scholar
  54. 54.
    Shchedrina VA, Novoselov SV, Malinouski MY et al (2007) Proc Natl Acad Sci USA 104:13919PubMedCrossRefGoogle Scholar
  55. 55.
    Lobanov AV, Delgado C, Rahlfs S et al (2006) Nucl Acids Res 34:496PubMedCrossRefGoogle Scholar
  56. 56.
    Gladyshev VN, Khangulov SV, Axley MJ et al (1994) Proc Natl Acad Sci USA 91:7708PubMedCrossRefGoogle Scholar
  57. 57.
    Boyington JC, Gladyshev VN, Khangulov SV et al (1997) Science 275:1305PubMedCrossRefGoogle Scholar
  58. 58.
    Romero H, Zhang Y, Gladyshev VN et al (2005) Genome Biol 6:R66PubMedCrossRefGoogle Scholar
  59. 59.
    Garcin E, Vernede X, Hatchikian EC et al (1999) Structure 7:557PubMedCrossRefGoogle Scholar
  60. 60.
    Wilting R, Schorling S, Persson BC et al (1997) J Mol Biol 266:637PubMedCrossRefGoogle Scholar
  61. 61.
    Vorholt JA, Vaupel M, Thauer RK (1997) Mol Microbiol 23:1033PubMedCrossRefGoogle Scholar
  62. 62.
    Garcia GE, Stadtman TC (1991) J Bacteriol 173:2093PubMedGoogle Scholar
  63. 63.
    Wagner M, Sonntag D, Grimm R et al (1999) Eur J Biochem 260:38PubMedCrossRefGoogle Scholar
  64. 64.
    Andreesen JR, Wagner M, Sonntag D et al (1999) Biofactors 10:263PubMedCrossRefGoogle Scholar
  65. 65.
    Schrader T, Rienhofer A, Andreesen JR (1999) Eur J Biochem 264:862PubMedCrossRefGoogle Scholar
  66. 66.
    Sohling B, Parther T, Rucknagel KP et al (2001) Biol Chem 382:979PubMedCrossRefGoogle Scholar
  67. 67.
    Hatfield DL, Gladyshev VN (2002) Mol Cell Biol 22:3565PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang Y, Romero H, Salinas G et al (2006) Genome Biol 7:R94PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Y, Gladyshev VN (2008) PLoS Genet 4:e1000095PubMedCrossRefGoogle Scholar
  70. 70.
    Lee BC, Lobanov AV, Marino SM et al (2011) J Biol Chem 286:18747Google Scholar
  71. 71.
    Lobanov AV, Hatfield DL, Gladyshev VN (2009) Biochim Biophys Acta 1790:1424PubMedGoogle Scholar
  72. 72.
    Taskov K, Chapple C, Kryukov GV et al (2005) Nucleic Acids Res 33:2227PubMedCrossRefGoogle Scholar
  73. 73.
    Lobanov AV, Hatfield DL, Gladyshev VN (2008) Protein Sci 17:176PubMedCrossRefGoogle Scholar
  74. 74.
    Chapple CE, Guigó R (2008) PLoS One 3:e2968PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang Y, Gladyshev V (2005) Bioinformatics 21:2580PubMedCrossRefGoogle Scholar
  76. 76.
    Gobler CJ, Berry DL, Dyhrman ST et al (2011) Proc Natl Acad Sci USA 108:4352PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang Y, Gladyshev VN (2007) Nucleic Acids Res 35:4952PubMedCrossRefGoogle Scholar
  78. 78.
    Lobanov AV, Fomenko DE, Zhang Y et al (2007) Genome Biol 8:R198PubMedCrossRefGoogle Scholar
  79. 79.
    Castellano S, Andrés AM, Bosch E et al (2009) Mol Biol Evol 26:2031PubMedCrossRefGoogle Scholar
  80. 80.
    Turanov AA, Lobanov AV, Fomenko DE et al (2009) Science 323:259PubMedCrossRefGoogle Scholar
  81. 81.
    Fomenko DE, Xing W, Adair BM et al (2007) Science 315:387PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Genetics, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations