Skip to main content

Evolutionary Basis for the Use of Selenocysteine

  • Chapter
  • First Online:
Book cover Selenium
  • 1912 Accesses

Abstract

Evolutionary adaptations to dietary selenium may explain the use of selenocysteine in proteins. If so, adaptive signals should be present in the genomic regions of selenoprotein genes. It is, however, difficult to identify the signatures of adaptation left by natural selection in the genome of extant species (including humans). Furthermore, dietary adaptations to selenium may have happened in some species but not in others. For example, while dietary selenium does not seem to be a major selective force behind the evolution of selenocysteine use in vertebrate proteins, it may be an important factor in other lineages. Whether levels of selenium in the diet have driven the evolution of other functionally important amino acid changes in selenoproteins is not known. Dietary selenium may have also shaped the regulation of selenoprotein genes and of genes involved in the metabolism of selenium. Evolutionary genetics methods aimed at detecting signals of natural selection at the regulatory level are key to answering this question. Understanding the genetic basis of adaptations to levels of selenium in the diet would help shed light on the molecular mechanisms behind the metabolism of selenium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kryukov GV, Castellano S, Novoselov SV et al (2003) Science 300:1439

    Article  PubMed  CAS  Google Scholar 

  2. Kryukov GV, Gladyshev VN (2004) EMBO Rep 5:538

    Article  PubMed  CAS  Google Scholar 

  3. Castellano S, Lobanov AV, Chapple C et al (2005) Proc Natl Acad Sci USA 102:16188

    Article  PubMed  CAS  Google Scholar 

  4. Fomenko DE, Xing W, Adair BM et al (2007) Science 315:387

    Article  PubMed  CAS  Google Scholar 

  5. Castellano S, Andrés AM, Bosch E et al (2009) Mol Biol Evol 26:2031

    Article  PubMed  CAS  Google Scholar 

  6. Distante S, Robson KJH, Graham-Campbell J et al (2004) Hum Genet 115:269

    Article  PubMed  CAS  Google Scholar 

  7. Denic S, Agarwal MM (2007) Nutrition 23:603

    Article  PubMed  CAS  Google Scholar 

  8. Levander OA (1987) Ann Rev Nutr 7:227

    Article  CAS  Google Scholar 

  9. Valentine JL (1997) Biomed Environ Sci 10:292

    PubMed  CAS  Google Scholar 

  10. Steinnes E (2009) Environ Geochem Health 31:523

    Article  PubMed  CAS  Google Scholar 

  11. Luca F, Perry GH, Di Rienzo A (2010) Annu Rev Nutr 30:291

    Article  PubMed  CAS  Google Scholar 

  12. Castellano S (2009) Biochim Biophys Acta 1790:1463

    PubMed  CAS  Google Scholar 

  13. Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  14. Kimura M (1968) Nature 217:624

    Article  PubMed  CAS  Google Scholar 

  15. Kanzok SM, Fechner A, Bauer H et al (2001) Science 291:643

    Article  PubMed  CAS  Google Scholar 

  16. Gromer S, Johansson L, Bauer H et al (2003) Proc Natl Acad Sci USA 100:12618

    Article  PubMed  CAS  Google Scholar 

  17. Kim HY, Gladyshev VN (2005) PLoS Biol 3:e375

    Article  PubMed  Google Scholar 

  18. Weiss G (2002) Eur J Clin Invest 32:70

    Article  PubMed  CAS  Google Scholar 

  19. Chua ACG, Graham RM, Trinder D et al (2007) Crit Rev Clin Lab Sci 44:413

    Article  PubMed  CAS  Google Scholar 

  20. Datz C, Haas T, Rinner H et al (1998) Clin Chem 44:2429

    PubMed  CAS  Google Scholar 

  21. Beutler E (2006) Annu Rev Med 57:331

    Article  PubMed  CAS  Google Scholar 

  22. Merryweatherclarke AT, Pointon JJ, Shearman JD et al (1997) J Med Genet 34:275

    Article  CAS  Google Scholar 

  23. Stephens JC, Reich DE, Goldstein DB et al (1998) Am J Hum Genet 62:1507

    Article  PubMed  CAS  Google Scholar 

  24. Merryweatherclarke AT, Pointon JJ, Jouanolle AM et al (2000) Genet Test 4:183

    Article  CAS  Google Scholar 

  25. Naugler C (2008) Med Hypotheses 70:691

    Article  PubMed  CAS  Google Scholar 

  26. Aranda N, Viteri FE, Montserrat C et al (2010) Ann Hematol 89:767

    Article  PubMed  CAS  Google Scholar 

  27. Swallow DM (2003) Annu Rev Genet 37:197

    Article  PubMed  CAS  Google Scholar 

  28. Foster CB, Aswath K, Chanock SJ et al (2006) BMC Genet 7:56

    Article  PubMed  Google Scholar 

  29. Green RE, Krause J, Briggs AW et al (2010) Science 328:710

    Article  PubMed  CAS  Google Scholar 

  30. Jeong JY, Wang Y, Sytkowski AJ (2009) Biochem Biophys Res Commun 379:583

    Article  PubMed  Google Scholar 

  31. Fang W, Goldberg ML, Pohl NM et al (2010) Carcinogenesis 31:1360

    Article  PubMed  CAS  Google Scholar 

  32. Voight BF, Kudaravalli S, Wen X et al (2006) PLoS Biol 4:446

    Article  CAS  Google Scholar 

  33. Olds LC, Sibley E (2003) Hum Mol Genet 12:2333

    Article  PubMed  CAS  Google Scholar 

  34. Haygood R, Fedrigo O, Hanson B et al (2007) Nat Genet 39:1140

    Article  PubMed  CAS  Google Scholar 

  35. Pennington JA, Young BE (1991) J Am Diet Assoc 91:179

    PubMed  CAS  Google Scholar 

  36. Müller C, Wingler K, Brigelius-Flohé R (2003) Biol Chem 384:11

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

White, L., Castellano, S. (2011). Evolutionary Basis for the Use of Selenocysteine. In: Hatfield, D., Berry, M., Gladyshev, V. (eds) Selenium. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1025-6_7

Download citation

Publish with us

Policies and ethics