Skip to main content

Chemical Basis for the Use of Selenocysteine

  • Chapter
  • First Online:
Selenium

Abstract

Since the discovery of selenocysteine as the 21st amino acid in the genetic code, two streams of thought have dominated the question of why selenium is used to replace sulfur in enzyme active sites in the form of selenocysteine. These ideas are that selenocysteine is (i) a “relic of the anaerobic world” and (ii) “catalytically superior” to the use of sulfur as cysteine. This latter idea is due to the experimental finding that the replacement of selenocysteine with cysteine in enzyme active sites results in a large drop in catalytic activity, and has been interpreted to mean that selenocysteine is essential for catalyzing the formation of product from substrate. We and others have previously proposed that selenocysteine is not catalytically essential since cysteine homologs of selenocysteine enzymes exist and catalyze their enzymatic reactions with comparable efficiency. Here, and elsewhere, we discuss the idea that the use of selenocysteine confers an enzyme with the ability to resist irreversible inactivation by oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Squires JE, Berry MJ (2008) IUBMB Life 60:232

    Article  PubMed  CAS  Google Scholar 

  2. Berry MJ, Maia AL, Kieffer JD et al (1992) Endocrinology 13:1848

    Article  Google Scholar 

  3. Zhong L, Holmgren A (2000) J Biol Chem 275:18121

    Article  PubMed  CAS  Google Scholar 

  4. Hazebrouck S, Camoin L, Faltin Z et al (2000) J Biol Chem 275:28715

    Article  PubMed  CAS  Google Scholar 

  5. Lacourciere GM, Stadtman TC (1999) Proc Natl Acad Sci USA 96:44

    Article  PubMed  CAS  Google Scholar 

  6. Wessjohann LA, Schneider A, Abbas M et al (2007) Biol Chem 388:997

    Article  PubMed  CAS  Google Scholar 

  7. Arnér ES (2010) Exp Cell Res 316:1296

    Article  PubMed  Google Scholar 

  8. Hondal RJ, Ruggles EL (2011) Amino Acids 41: 73

    Google Scholar 

  9. Lacey BM, Eckenroth BE, Flemer S et al (2008) Biochemistry 47:12810

    Article  PubMed  CAS  Google Scholar 

  10. Kanzok SM, Fechner A, Bauer H et al (2001) Science 291:643

    Article  PubMed  CAS  Google Scholar 

  11. Bell IM, Fisher ML, Wu ZP et al (1993) Biochemistry 32:3754

    Article  PubMed  CAS  Google Scholar 

  12. Reich HJ, Gudmundsson BO, Green DP et al (2002) Helv Chim Acta 85:3748

    Article  CAS  Google Scholar 

  13. Steinmann D, Nauser T, Koppenol WH (2010) J Org Chem 75:6696

    Article  PubMed  CAS  Google Scholar 

  14. Gancarz RA, Kice JL (1980) Tet Lett 21:1697

    Article  CAS  Google Scholar 

  15. Snider G, Grout L, Ruggles EL et al (2010) Biochemistry 49:10329

    Article  PubMed  CAS  Google Scholar 

  16. Snider G, Hondal RJ (2011) Biochemistry (submitted)

    Google Scholar 

  17. Eckenroth B, Harris K, Turanov AA et al (2006) Biochemistry 45:5158

    Article  PubMed  CAS  Google Scholar 

  18. Nauser T, Steinmann D, Koppenol WH (2010) Amino Acids (Epub 13 May 2010)

    Google Scholar 

  19. Nauser T, Dockheer S, Kissner R et al (2006) Biochemistry 45:6038

    Article  PubMed  CAS  Google Scholar 

  20. Crank G, Makin MIH (1984) Aust J Chem 37:2331

    Article  CAS  Google Scholar 

  21. Rocher C, Lalanne JL, Chaudiere J (1992) Eur J Biochem 205:955

    Article  PubMed  CAS  Google Scholar 

  22. Parkin A, Goldet G, Cavazza C et al (2008) J Am Chem Soc 130:13410

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institutes of Health Grant GM094172 to RJH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Hondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ruggles, E.L., Snider, G.W., Hondal, R.J. (2011). Chemical Basis for the Use of Selenocysteine. In: Hatfield, D., Berry, M., Gladyshev, V. (eds) Selenium. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1025-6_6

Download citation

Publish with us

Policies and ethics