Skip to main content

Mouse Models for Glutathione Peroxidase 4 (GPx4)

  • Chapter
  • First Online:
Selenium

Abstract

The selenoperoxidase glutathione peroxidase 4 (GPx4 – also frequently referred to as phospholipid hydroperoxide glutathione peroxidase, PHGPx) is one of the eight glutathione peroxidases in mammals, but the only one known to be essential for early mouse development. GPx4 is emerging as one of the most central selenoproteins, and thus has attracted considerable interest in recent years. Key insights into GPx4 function came from the numerous transgenic and knockout mouse studies performed mainly during the last couple of years, which are summarized here. These investigations not only firmly established a crucial role for GPx4 in male fertility and neuroprotection, but also indicated a major regulatory role of GPx4 in oxidative stress-induced cell death signaling. Beyond this, lipid hydroperoxides (LOOH), downstream of GPx4 inactivation, have been recently shown to control receptor tyrosine kinase (RTK) signaling, thus adding a new layer of complexity to the multifaceted roles of GPx4 in cell signaling and disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ursini F, Maiorino M, Valente M et al (1982) Biochim Biophys Acta 710:197

    PubMed  CAS  Google Scholar 

  2. Liang H, Yoo SE, Na R et al (2009) J Biol Chem 284:30836

    Article  PubMed  CAS  Google Scholar 

  3. Toppo S, Flohé L, Ursini F et al (2009) Biochim Biophys Acta 1790:1486

    Article  PubMed  CAS  Google Scholar 

  4. Conrad M, Schneider M, Seiler A et al (2007) Biol Chem 388:1019

    Article  PubMed  CAS  Google Scholar 

  5. Bosl MR, Takaku K, Oshima M et al (1997) Proc Natl Acad Sci USA 94:5531

    Article  PubMed  CAS  Google Scholar 

  6. Ho YS, Magnenat JL, Bronson RT et al (1997) J Biol Chem 272:16644

    Article  PubMed  CAS  Google Scholar 

  7. Conrad M, Schweizer U (2010) Antioxid Redox Signal 12:851

    Article  PubMed  CAS  Google Scholar 

  8. Yant LJ, Ran Q, Rao L et al (2003) Free Radic Biol Med 34:496

    Article  PubMed  CAS  Google Scholar 

  9. Imai H, Hirao F, Sakamoto T et al (2003) Biochem Biophys Res Commun 305:278

    Article  PubMed  CAS  Google Scholar 

  10. Conrad M, Jakupoglu C, Moreno SG et al (2004) Mol Cell Biol 24:9414

    Article  PubMed  CAS  Google Scholar 

  11. Jakupoglu C, Przemeck GK, Schneider M et al (2005) Mol Cell Biol 25:1980

    Article  PubMed  CAS  Google Scholar 

  12. Garry MR, Kavanagh TJ, Faustman EM et al (2008) Free Radic Biol Med 44:1075

    Article  PubMed  CAS  Google Scholar 

  13. Seiler A, Schneider M, Forster H et al (2008) Cell Metab 8:237

    Article  PubMed  CAS  Google Scholar 

  14. Imai H, Hakkaku N, Iwamoto R et al (2009) J Biol Chem 284:32522

    Article  PubMed  CAS  Google Scholar 

  15. Ran Q, Van Remmen H, Gu M et al (2003) Free Radic Biol Med 35:1101

    Article  PubMed  CAS  Google Scholar 

  16. Ran Q, Liang H, Ikeno Y et al (2007) J Gerontol A Biol Sci Med Sci 62:932

    PubMed  Google Scholar 

  17. Ran Q, Liang H, Gu M et al (2004) J Biol Chem 279:55137

    Article  PubMed  CAS  Google Scholar 

  18. Lu L, Oveson BC, Jon YJ et al (2009) Antioxid Redox Signal 11:715

    Article  PubMed  CAS  Google Scholar 

  19. Dabkowski ER, Williamson CL, Hollander JM (2008) Free Radic Biol Med 45:855

    Article  PubMed  CAS  Google Scholar 

  20. Guo Z, Ran Q, Roberts LJ 2nd et al (2008) Free Radic Biol Med 44:343

    Article  PubMed  CAS  Google Scholar 

  21. Jacobsson SO, Hansson E (1965) Acta Vet Scand 6:287

    PubMed  CAS  Google Scholar 

  22. Gunn SA, Gould TC, Anderson WA (1967) Proc Soc Exp Biol Med 124:1260

    PubMed  CAS  Google Scholar 

  23. Wu SH, Oldfield JE, Whanger PD et al (1973) Biol Reprod 8:625

    PubMed  CAS  Google Scholar 

  24. Watanabe T, Endo A (1991) Mutat Res 262:93

    Article  PubMed  CAS  Google Scholar 

  25. Ursini F, Heim S, Kiess M et al (1999) Science 285:1393

    Article  PubMed  CAS  Google Scholar 

  26. Maiorino M, Roveri A, Benazzi L et al (2005) J Biol Chem 280:38395

    Article  PubMed  CAS  Google Scholar 

  27. Shalgi R, Seligman J, Kosower NS (1989) Biol Reprod 40:1037

    Article  PubMed  CAS  Google Scholar 

  28. Pfeifer H, Conrad M, Roethlein D et al (2001) Faseb J 15:1236

    Article  PubMed  CAS  Google Scholar 

  29. Moreno SG, Laux G, Brielmeier M et al (2003) Biol Chem 384:635

    Article  PubMed  CAS  Google Scholar 

  30. Conrad M, Moreno SG, Sinowatz F et al (2005) Mol Cell Biol 25:7637

    Article  PubMed  CAS  Google Scholar 

  31. Schneider M, Forster H, Boersma A et al (2009) Faseb J 23:3233

    Article  PubMed  CAS  Google Scholar 

  32. Behne D, Hilmert H, Scheid S et al (1988) Biochim Biophys Acta 966:12

    Article  PubMed  CAS  Google Scholar 

  33. Zhang Y, Zhou Y, Schweizer U et al (2008) J Biol Chem 283:2427

    Article  PubMed  CAS  Google Scholar 

  34. Hill KE, Zhou J, McMahan WJ et al (2004) J Nutr 134:157

    PubMed  CAS  Google Scholar 

  35. Renko K, Werner M, Renner-Muller I et al (2008) Biochem J 409:741

    Article  PubMed  CAS  Google Scholar 

  36. Wirth EK, Conrad M, Winterer J et al (2010) Faseb J 24:844

    Article  PubMed  CAS  Google Scholar 

  37. Soerensen J, Jakupoglu C, Beck H et al (2008) PLoS One 3:e1813

    Article  PubMed  Google Scholar 

  38. Witztum JL, Steinberg D (1991) J Clin Invest 88:1785

    Article  PubMed  CAS  Google Scholar 

  39. Schneider M, Wortmann M, Mandal PK et al (2010) Neoplasia 12:254

    PubMed  CAS  Google Scholar 

  40. Tobaben S, Grohm J, Seiler A et al (2011) Cell Death Differ 18:282

    Google Scholar 

  41. Loscalzo J (2008) Cell Metab 8:182

    Article  PubMed  CAS  Google Scholar 

  42. Rhee SG, Kang SW, Jeong W et al (2005) Curr Opin Cell Biol 17:183

    Article  PubMed  CAS  Google Scholar 

  43. Salmeen A, Barford D (2005) Antioxid Redox Signal 7:560

    Article  PubMed  CAS  Google Scholar 

  44. Choi MH, Lee IK, Kim GW et al (2005) Nature 435:347

    Article  PubMed  CAS  Google Scholar 

  45. Kanda M, Ihara Y, Murata H et al (2006) J Biol Chem 281:28518

    Article  PubMed  CAS  Google Scholar 

  46. Loh K, Deng H, Fukushima A et al (2009) Cell Metab 10:260

    Article  PubMed  CAS  Google Scholar 

  47. Woo HA, Yim SH, Shin DH et al (2010) Cell 140:517

    Article  PubMed  CAS  Google Scholar 

  48. Conrad M, Sandin A, Forster H et al (2010) Proc Natl Acad Sci USA 107:15774

    Article  PubMed  CAS  Google Scholar 

  49. Conrad M (2009) Biochim Biophys Acta 1790:1575

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) CO 291/2-3, the DFG Priority Programmes SPP1087 and SPP1190 and a travel fellowship from the European Molecular Biology Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Conrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Conrad, M. (2011). Mouse Models for Glutathione Peroxidase 4 (GPx4). In: Hatfield, D., Berry, M., Gladyshev, V. (eds) Selenium. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1025-6_43

Download citation

Publish with us

Policies and ethics