Skip to main content
Book cover

Selenium pp 493–503Cite as

Inactivation of Glutathione Peroxidase 1 and Peroxiredoxin 2 by Peroxides in Red Blood Cells

  • Chapter
  • First Online:
  • 1905 Accesses

Abstract

Glutathione peroxidase 1 (GPx1), peroxiredoxin II (Prx II), and catalase are the principal enzymes responsible for peroxide elimination in red blood cells (RBCs). GPx1, which contains a selenocysteine (Sec) residue at its active site, is irreversibly inactivated by its own substrate as the result of the oxidation of selenium atom followed by the conversion of oxidized Sec to dehydroalanine (DHA). Prx II is inactivated when its catalytic cysteine (Cys) is hyperoxidized to cysteine sulfinic acid during catalysis. The hyperoxidation can be reversed by sulfiredoxin. The activity of sulfiredoxin in RBCs is sufficient to counteract the Prx II hyperoxidation that occurs during elimination of H2O2 molecules resulting from hemoglobin (Hb) autoxidation. We developed a blot method for detection of DHA-containing proteins, with the use of which we observed that the amount of DHA-containing GPx1 increases with aging of RBCs as well as in RBCs exposed to H2O2 generated either externally by glucose oxidase or internally as a result of aniline-induced Hb autoxidation. Given that the conversion of Sec to DHA is irreversible and that protein turnover mechanism is lacking in RBCs, the content of DHA–GPx1 in each RBC likely reflects total oxidative stress experienced by the cell during its lifetime. Therefore, DHA–GPx1 in RBCs might be a suitable surrogate marker for evaluation of oxidative stress in the body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Winterbourn CC, Stern A (1987) J Clin Invest 80:1486

    Article  PubMed  CAS  Google Scholar 

  2. Rifkind JM, Ramasamy S, Manoharan PT et al (2004) Antioxid Redox Signal 6:657

    Article  PubMed  CAS  Google Scholar 

  3. Winterbourn CC (1985) Environ Health Perspect 64:321

    Article  PubMed  CAS  Google Scholar 

  4. Johnson RM, Goyette G (2005) Free Radic Biol Med 39:1407

    Article  PubMed  CAS  Google Scholar 

  5. Ho YS, Xiong Y, Ma W et al (2004) J Biol Chem 279:32804

    Article  PubMed  CAS  Google Scholar 

  6. Johnson RM, Goyette G, Ravindranath Y Jr et al (2000) Blood 96:1985

    PubMed  CAS  Google Scholar 

  7. Low FM, Hampton MB, Peskin AV et al (2007) Blood 109:2611

    Article  PubMed  CAS  Google Scholar 

  8. Cho CS, Lee S, Lee GT et al (2010) Antioxid Redox Signal 12:1235

    Article  PubMed  CAS  Google Scholar 

  9. Flohe L (2001) Selenoproteins of the glutathione system. Kluwer Academic Publishers, Boston

    Google Scholar 

  10. Marzocchi B, Ciccoli L, Tani C et al (2005) Pediatr Res 58:660

    Article  PubMed  CAS  Google Scholar 

  11. Cho CS, Kato GJ, Yang SH et al (2010) Antioxid Redox Signal 13:1

    Article  PubMed  CAS  Google Scholar 

  12. Beutler E (1978) Hemolytic anemias in disorders of red cell metabolism. Plenum, New York

    Google Scholar 

  13. Aebi H, Heiniger JP, Buetler R et al (1961) Experientia 17:466

    Article  PubMed  CAS  Google Scholar 

  14. Lee TH, Kim SU, Yu SL et al (2003) Blood 101:5033

    Article  PubMed  CAS  Google Scholar 

  15. Moon JC, Hah YS, Kim WY et al (2005) J Biol Chem 280:28775

    Article  PubMed  CAS  Google Scholar 

  16. Moore RB, Mankad MV, Shriver SK et al (1991) J Biol Chem 266:18964

    PubMed  CAS  Google Scholar 

  17. Blum J, Fridovich I (1985) Arch Biochem Biophys 240:500

    Article  PubMed  CAS  Google Scholar 

  18. Pigeolet E, Corbisier P, Houbion A et al (1990) Mech Ageing Dev 51:283

    Article  PubMed  CAS  Google Scholar 

  19. Asahi M, Fujii J, Takao T et al (1997) J Biol Chem 272:19152

    Article  PubMed  CAS  Google Scholar 

  20. Ma S, Caprioli RM, Hill KE et al (2003) J Am Soc Mass Spectrom 14:593

    Article  PubMed  CAS  Google Scholar 

  21. Andersen HR, Nielsen JB, Nielsen F et al (1997) Clin Chem 43:562

    PubMed  CAS  Google Scholar 

  22. Blankenberg S, Rupprecht HJ, Bickel C et al (2003) N Engl J Med 349:1605

    Article  PubMed  CAS  Google Scholar 

  23. Schnabel R, Lackner KJ, Rupprecht HJ et al (2005) J Am Coll Cardiol 45:1631

    Article  PubMed  CAS  Google Scholar 

  24. Salvo G, Caprari P, Samoggia P et al (1982) Clin Chim Acta 122:293

    Article  PubMed  CAS  Google Scholar 

  25. Ninfali P, Palma F, Baronciani L et al (1991) Mol Cell Biochem 106:151

    Article  PubMed  CAS  Google Scholar 

  26. Levengood MR, van der Donk WA (2006) Nat Protoc 1:3001

    Article  PubMed  CAS  Google Scholar 

  27. Wendel A, Pilz W, Ladenstein R et al (1975) Biochim Biophys Acta 377:211

    PubMed  CAS  Google Scholar 

  28. Ohmiya Y, Hayashi H, Kondo T et al (1990) J Biol Chem 265:9066

    PubMed  CAS  Google Scholar 

  29. Hamann M, Zhang T, Hendrich S et al (2002) Methods Enzymol 348:146

    Article  PubMed  CAS  Google Scholar 

  30. Seo J, Jeong J, Kim YM et al (2008) J Proteome Res 7:587

    Article  PubMed  CAS  Google Scholar 

  31. Peskin AV, Low FM, Paton LN et al (2007) J Biol Chem 282:11885

    Article  PubMed  CAS  Google Scholar 

  32. Yang KS, Kang SW, Woo HA et al (2002) J Biol Chem 277:38029

    Article  PubMed  CAS  Google Scholar 

  33. Biteau B, Labarre J, Toledano MB (2003) Nature 425:980

    Article  PubMed  CAS  Google Scholar 

  34. Jeong W, Park SJ, Chang TS et al (2006) J Biol Chem 281:14400

    Article  PubMed  CAS  Google Scholar 

  35. Woo HA, Jeong W, Chang TS et al (2005) J Biol Chem 280:3125

    Article  PubMed  CAS  Google Scholar 

  36. Chang TS, Jeong W, Choi SY et al (2002) J Biol Chem 277:25370

    Article  PubMed  CAS  Google Scholar 

  37. Woo HA, Yim SH, Shin DH et al (2010) Cell 140:517

    Article  PubMed  CAS  Google Scholar 

  38. Woo HA, Chae HZ, Hwang SC et al (2003) Science 300:653

    Google Scholar 

  39. Harrison JH Jr, Jollow DJ (1986) J Pharmacol Exp Ther 238:1045

    PubMed  CAS  Google Scholar 

  40. Singh H, Purnell E, Smith C (2007) Arh Hig Rada Toksikol 58:275

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Korean Science and Engineering Foundation (National Honor Scientist Program grant 2006-05106 and Bio R&D program grant M10642040001-07N4204-00110) to S.G.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Goo Rhee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cho, CS., Rhee, S.G. (2011). Inactivation of Glutathione Peroxidase 1 and Peroxiredoxin 2 by Peroxides in Red Blood Cells. In: Hatfield, D., Berry, M., Gladyshev, V. (eds) Selenium. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1025-6_39

Download citation

Publish with us

Policies and ethics