Skip to main content

Selenoprotein N: Its Role in Disease

  • Chapter
  • First Online:
Selenium

Abstract

Selenoprotein N is among the newly identified selenoproteins, initially discovered in silico with no known molecular function. It has become the focus of attention because mutations in the selenoprotein N gene are linked to a group of muscle disorders, now referred as SEPN1-related myopathies. An emerging view arising from recent findings is that the loss of selenoprotein N leads to cellular sensitivity to oxidative stress and loss of calcium homeostasis. Studies of animal models for SEPN1-Related Myopathies revealed the fate of sensitized muscle may depend on stresses to which it is subjected, and defects in the function of selenoprotein N-deficient muscle progenitor cells during development in zebrafish embryos or during muscle regeneration in fully developed mouse muscle. Dysfunction of these different processes raises significant questions regarding which of the phenotypic manifestations of SEPN1-Related Myopathies are initiated by events during development and which are progressive in nature arising from dysfunction of mature muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Irons R, Carlson BA, Hatfield DL et al (2006) J Nutr 136:1311

    PubMed  CAS  Google Scholar 

  2. Arner ES (2010) Exp Cell Res 316:1296

    Article  PubMed  CAS  Google Scholar 

  3. Forman HJ, Maiorino M, Ursini F (2010) Biochemistry 49:835

    Article  PubMed  CAS  Google Scholar 

  4. Kryukov GV, Castellano S, Novoselov SV et al (2003) Science 300:1439

    Article  PubMed  CAS  Google Scholar 

  5. Lobanov AV, Hatfield DL, Gladyshev VN (2009) Biochim Biophys Acta 1790:1424

    PubMed  CAS  Google Scholar 

  6. Lescure A, Gautheret D, Carbon P et al (1999) J Biol Chem 274:38147

    Article  PubMed  CAS  Google Scholar 

  7. Moghadaszadeh B, Petit N, Jaillard C et al (2001) Nat Genet 29:17

    Article  PubMed  CAS  Google Scholar 

  8. Arbogast S, Ferreiro A (2010) Antioxid Redox Signal 12:893

    Article  PubMed  CAS  Google Scholar 

  9. Rederstorff M, Krol A, Lescure A (2006) Cell Mol Life Sci 63:52

    Article  PubMed  CAS  Google Scholar 

  10. Whanger PD (2000) Cell Mol Life Sci 57:1846

    Article  PubMed  CAS  Google Scholar 

  11. Ferreiro A, Quijano-Roy S, Pichereau C et al (2002) Am J Hum Genet 71:739

    Article  PubMed  Google Scholar 

  12. Ferreiro A, Ceuterick-de Groote C, Marks JJ et al (2004) Ann Neurol 55:676

    Article  PubMed  CAS  Google Scholar 

  13. Clarke NF, Kidson W, Quijano-Roy S et al (2006) Ann Neurol 59:546

    Article  PubMed  CAS  Google Scholar 

  14. Herasse M, Parain K, Marty I et al (2007) J Neuropathol Exp Neurol 66:57

    Article  PubMed  CAS  Google Scholar 

  15. Jurynec MJ, Xia R, Mackrill JJ et al (2008) Proc Natl Acad Sci USA 105:12485

    Article  PubMed  CAS  Google Scholar 

  16. Pietrini V, Marbini A, Galli L et al (2004) J Neurol 251:102

    Article  PubMed  Google Scholar 

  17. Clarke NF, Waddell LB, Cooper ST et al (2010) Hum Mutat 31:1544

    Article  Google Scholar 

  18. Ferreiro A, Monnier N, Romero NB et al (2002) Ann Neurol 51:750

    Article  PubMed  CAS  Google Scholar 

  19. Quinlivan RM, Muller CR, Davis M et al (2003) Arch Dis Child 88:1051

    Article  PubMed  CAS  Google Scholar 

  20. Zvaritch E, Kraeva N, Bombardier E et al (2009) Proc Natl Acad Sci USA 106:21813

    Article  PubMed  CAS  Google Scholar 

  21. Allamand V, Richard P, Lescure A et al (2006) EMBO Rep 7:450

    PubMed  CAS  Google Scholar 

  22. Schara U, Kress W, Bonnemann CG et al (2008) Eur J Paediatr Neurol 12:224

    Article  PubMed  Google Scholar 

  23. Cagliani R, Fruguglietti ME, Berardinelli A et al (2010) J Neurol Sci 300:107

    Article  Google Scholar 

  24. Petit N, Lescure A, Rederstorff M et al (2003) Hum Mol Genet 12:1045

    Article  PubMed  CAS  Google Scholar 

  25. Thisse C, Degrave A, Kryukov GV et al (2003) Gene Expr Patterns 3:525

    Article  PubMed  CAS  Google Scholar 

  26. Castets P, Maugenre S, Gartioux C et al (2009) BMC Dev Biol 9:46

    Article  PubMed  Google Scholar 

  27. Deniziak M, Thisse C, Rederstorff M et al (2007) Exp Cell Res 313:156

    Article  PubMed  CAS  Google Scholar 

  28. Castets P, Bertrand AT, Beuvin M et al (2011) Hum Mol Genet 20:694

    Article  PubMed  CAS  Google Scholar 

  29. Rederstorff M, Castets P, Arbogast S et al (2011) PLoS One 6:e23094

    Google Scholar 

  30. Sacco A, Mourkioti F, Tran R et al (2010) Cell 143:1059

    Google Scholar 

  31. Chang S, Multani AS, Cabrera NG et al (2004) Nat Genet 36:877

    Article  PubMed  CAS  Google Scholar 

  32. Wong KK, Maser RS, Bachoo RM et al (2003) Nature 421:643

    Article  PubMed  CAS  Google Scholar 

  33. Steinbrenner H, Sies H (2009) Biochim Biophys Acta 1790:1478

    PubMed  CAS  Google Scholar 

  34. Xia R, Stangler T, Abramson JJ (2000) J Biol Chem 275:36556

    Article  PubMed  CAS  Google Scholar 

  35. Aracena-Parks P, Goonasekera SA, Gilman CP et al (2006) J Biol Chem 281:40354

    Article  PubMed  CAS  Google Scholar 

  36. Arbogast S, Beuvin M, Fraysse B et al (2009) Ann Neurol 65:677

    Article  PubMed  CAS  Google Scholar 

  37. Boncompagni S, Rossi AE, Micaroni M et al (2009) Mol Biol Cell 20:1058

    Article  PubMed  CAS  Google Scholar 

  38. Csordas G, Hajnoczky G (2009) Biochim Biophys Acta 1787:1352

    Article  PubMed  CAS  Google Scholar 

  39. Brookes PS, Darley-Usmar VM (2004) Am J Physiol Heart Circ Physiol 286:39

    Article  Google Scholar 

  40. Peng TI, Jou MJ (2010) Ann NY Acad Sci 1201:183

    Article  PubMed  CAS  Google Scholar 

  41. Giorgi C, De Stefani D, Bononi A et al (2009) Int J Biochem Cell Biol 41:1817

    Article  PubMed  CAS  Google Scholar 

  42. Zundorf G, Reiser G (2011) Antioxid Redox Signal. doi:10.1089/ars.2010.3359

  43. Giulivi C, Ross-Inta C, Omanska-Klusek A et al (2010) J Biol Chem 286:99

    Article  PubMed  Google Scholar 

  44. Schoenmakers E, Agostini M, Mitchell C et al (2010) J Clin Invest 120:4220

    Article  PubMed  CAS  Google Scholar 

  45. Howard MT, Aggarwal G, Anderson CB et al (2005) EMBO J 24:1596

    Article  PubMed  CAS  Google Scholar 

  46. Howard MT, Moyle MW, Aggarwal G et al (2007) RNA 13:912

    Article  PubMed  CAS  Google Scholar 

  47. Maiti B, Arbogast S, Allamand V et al (2009) Hum Mutat 30:411

    Article  PubMed  CAS  Google Scholar 

  48. Castellano S, Andres AM, Bosch E et al (2009) Mol Biol Evol 26:2031

    Article  PubMed  CAS  Google Scholar 

  49. Chapple CE, Guigo R (2008) PLoS One 3:2968

    Article  Google Scholar 

  50. Lescure A, Rederstorff M, Krol A et al (2009) Biochim Biophys Acta 1790:1569

    PubMed  CAS  Google Scholar 

  51. Cheng Q, Sandalova T, Lindqvist Y et al (2009) J Biol Chem 284:3998

    Article  PubMed  CAS  Google Scholar 

  52. Papp LV, Lu J, Holmgren A et al (2007) Antioxid Redox Signal 9:775

    Article  PubMed  CAS  Google Scholar 

  53. Lu J, Berndt C, Holmgren A (2009) Biochim Biophys Acta 1790:1513

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Centre National de la Recherche Scientifique, University Strasbourg and the Association Française contre les Myopathies (to AL), Institut National de la Santé et de la Recherche Médicale (to VA) and National Institutes of Health Grants (to DJG and MTH). PC received PhD fellowships from the Ministère de la Recherche et de L’Enseignement, University Paris 06 and Association Française contre les Myopathies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Lescure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lescure, A., Castets, P., Grunwald, D.J., Allamand, V., Howard, M.T. (2011). Selenoprotein N: Its Role in Disease. In: Hatfield, D., Berry, M., Gladyshev, V. (eds) Selenium. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1025-6_22

Download citation

Publish with us

Policies and ethics