Practical Pharmacology in Regional Anesthesia

  • Jose A. Aguirre
  • Gina Votta-Velis
  • Alain Borgeat
Chapter

Abstract

Local anesthetics are the pharmacologic cornerstone of regional anesthesia producing reversible and complete blockade of neuronal transmission when applied near the axons. Their application results in complete interruption of nerve impulse conduction, allowing abolition of sensation from the area innervated by the corresponding nerves and leading also to motor block. A number of compounds with local anesthetic activity occur in nature such as cocaine, eugenol derived from plants, tetrodotoxin derived from fish species in the family Teraodontiformes, and saxitoxin derived from algae (dinoflagellates).

Keywords

Toxicity Epinephrine Fentanyl Cimetidine Clonidine 

References

  1. 1.
    Nguyen HM, Goldin AL. Sodium channel carboxyl-terminal residue regulates fast inactivation. J Biol Chem. 2010;285:9077–89.PubMedCrossRefGoogle Scholar
  2. 2.
    Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. 2007;71:311–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall WA. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na(+) channel alpha subunit. J Biol Chem. 2001;276:20–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Huang JH, Thalhammer JG, Raymond SA, Strichartz GR. Susceptibility to lidocaine of impulses in different somatosensory afferent fibers of rat sciatic nerve. J Pharmacol Exp Ther. 1997;282:802–11.PubMedGoogle Scholar
  5. 5.
    Ilfeld BM, Moeller LK, Mariano ER, Loland VJ, Stevens-Lapsley JE, Fleisher AS, et al. Continuous peripheral nerve blocks: is local anesthetic dose the only factor, or do concentration and volume influence infusion effects as well? Anesthesiology. 2010;112:347–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Ashchi M, Wiedemann HP, James KB. Cardiac complication from use of cocaine and phenylephrine in nasal septoplasty. Arch Otolaryngol Head Neck Surg. 1995;121:681–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Le Truong HH, Girard M, Drolet P, Grenier Y, Boucher C, Bergeron L. Spinal anesthesia: a comparison of procaine and lidocaine. Can J Anaesth. 2001;48:470–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Hodgson PS, Neal JM, Pollock JE, Liu SS. The neurotoxicity of drugs given intrathecally (spinal). Anesth Analg. 1999;88:797–809.PubMedGoogle Scholar
  9. 9.
    Duque S, Fernandez L. Delayed-type hypersensitivity to amide local anesthetics. Allergol Immunopathol (Madr). 2004;32:233–4.CrossRefGoogle Scholar
  10. 10.
    Meffin P, Long GJ, Thomas J. Clearance and metabolism of mepivacaine in the human neonate. Clin Pharmacol Ther. 1973;14:218–25.PubMedGoogle Scholar
  11. 11.
    Gristwood RW. Cardiac and CNS toxicity of levobupivacaine: strengths of evidence for advantage over bupivacaine. Drug Saf. 2002;25:153–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Mather LE, Chang DH. Cardiotoxicity with modern local anaesthetics: is there a safer choice? Drugs. 2001;61:333–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Casati A, Putzu M. Bupivacaine, levobupivacaine and ropivacaine: are they clinically different? Best Pract Res Clin Anaesthesiol. 2005;19:247–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Zink W, Graf BM. Benefit-risk assessment of ropivacaine in the management of postoperative pain. Drug Saf. 2004;27:1093–114.PubMedCrossRefGoogle Scholar
  15. 15.
    Fanelli G, Casati A, Beccaria P, Aldegheri G, Berti M, Tarantino F, et al. A double-blind comparison of ropivacaine, bupivacaine, and mepivacaine during sciatic and femoral nerve blockade. Anesth Analg. 1998;87:597–600.PubMedGoogle Scholar
  16. 16.
    Camorcia M, Capogna G, Columb MO. Minimum local analgesic doses of ropivacaine, levobupivacaine, and bupivacaine for intrathecal labor analgesia. Anesthesiology. 2005;102:646–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Weber A, Fournier R, Van Gessel E, Riand N, Gamulin Z. Epinephrine does not prolong the analgesia of 20 mL ropivacaine 0.5% or 0.2% in a femoral three-in-one block. Anesth Analg. 2001;93:1327–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Buckenmaier 3rd CC, Bleckner LL. Anaesthetic agents for advanced regional anaesthesia: a North American perspective. Drugs. 2005;65:745–59.PubMedCrossRefGoogle Scholar
  19. 19.
    Bernards CM, Carpenter RL, Kenter ME, Brown DL, Rupp SM, Thompson GE. Effect of epinephrine on central nervous system and cardiovascular system toxicity of bupivacaine in pigs. Anesthesiology. 1989;71:711–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Butterworth JFT, Strichartz GR. The alpha 2-adrenergic agonists clonidine and guanfacine produce tonic and phasic block of conduction in rat sciatic nerve fibers. Anesth Analg. 1993;76:295–301.PubMedGoogle Scholar
  21. 21.
    Kopacz DJ, Bernards CM. Effect of clonidine on lidocaine clearance in vivo: a microdialysis study in humans. Anesthesiology. 2001;95:1371–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Ota K, Namiki A, Iwasaki H, Takahashi I. Dose-related prolongation of tetracaine spinal anesthesia by oral clonidine in humans. Anesth Analg. 1994;79:1121–5.PubMedGoogle Scholar
  23. 23.
    Liu S, Chiu AA, Carpenter RL, Mulroy MF, Allen HW, Neal JM, et al. Fentanyl prolongs lidocaine spinal anesthesia without prolonging recovery. Anesth Analg. 1995;80:730–4.PubMedGoogle Scholar
  24. 24.
    Mulroy MF, Larkin KL, Siddiqui A. Intrathecal fentanyl-induced pruritus is more severe in combination with procaine than with lidocaine or bupivacaine. Reg Anesth Pain Med. 2001;26:252–6.PubMedGoogle Scholar
  25. 25.
    Nishikawa K, Kanaya N, Nakayama M, Igarashi M, Tsunoda K, Namiki A. Fentanyl improves analgesia but prolongs the onset of axillary brachial plexus block by peripheral mechanism. Anesth Analg. 2000;91:384–7.PubMedGoogle Scholar
  26. 26.
    Van de Velde M, Teunkens A, Hanssens M, Vandermeersch E, Verhaeghe J. Intrathecal sufentanil and fetal heart rate abnormalities: a double-blind, double placebo-controlled trial comparing two forms of combined spinal epidural analgesia with epidural analgesia in labor. Anesth Analg. 2004;98:1153–9 (table of contents).PubMedCrossRefGoogle Scholar
  27. 27.
    Grant SA. The Holy Grail: long-acting local anaesthetics and liposomes. Best Pract Res Clin Anaesthesiol. 2002;16:345–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Cheney FW, Domino KB, Caplan RA, Posner KL. Nerve injury associated with anesthesia: a closed claims analysis. Anesthesiology. 1999;90:1062–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Auroy Y, Benhamou D, Bargues L, Ecoffey C, Falissard B, Mercier FJ, et al. Major complications of regional anesthesia in France: the SOS Regional Anesthesia Hotline Service. Anesthesiology. 2002;97:1274–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Capdevila X, Bringuier S, Borgeat A. Infectious risk of continuous peripheral nerve blocks. Anesthesiology. 2009;110:182–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Popping DM, Zahn PK, Van Aken HK, Dasch B, Boche R, Pogatzki-Zahn EM. Effectiveness and safety of postoperative pain management: a survey of 18 925 consecutive patients between 1998 and 2006 (2nd revision): a database analysis of prospectively raised data. Br J Anaesth. 2008;101:832–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Neuburger M, Buttner J, Blumenthal S, Breitbarth J, Borgeat A. Inflammation and infection complications of 2285 perineural catheters: a prospective study. Acta Anaesthesiol Scand. 2007;51:108–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Horlocker TT. Complications of spinal and epidural anesthesia. Anesthesiol Clin N Am. 2000;18:461–85.CrossRefGoogle Scholar
  34. 34.
    Horlocker TT, McGregor DG, Matsushige DK, Schroeder DR, Besse JA. A retrospective review of 4767 consecutive spinal anesthetics: central nervous system complications. Perioperative Outcomes Group. Anesth Analg. 1997;84:578–84.PubMedGoogle Scholar
  35. 35.
    Lee LA, Posner KL, Domino KB, Caplan RA, Cheney FW. Injuries associated with regional anesthesia in the 1980s and 1990s: a closed claims analysis. Anesthesiology. 2004;101:143–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Ben-David B. Complications of regional anesthesia: an overview. Anesthesiol Clin N Am. 2002;20:665–7 (ix).CrossRefGoogle Scholar
  37. 37.
    Capdevila X, Pirat P, Bringuier S, Gaertner E, Singelyn F, Bernard N, et al. Continuous peripheral nerve blocks in hospital wards after orthopedic surgery: a multicenter prospective analysis of the quality of postoperative analgesia and complications in 1,416 patients. Anesthesiology. 2005;103:1035–45.PubMedCrossRefGoogle Scholar
  38. 38.
    Phillips OC, Ebner H, Nelson AT, Black MH. Neurologic complications following spinal anesthesia with lidocaine: a prospective review of 10,440 cases. Anesthesiology. 1969;30:284–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Drasner K. Local anesthetic systemic toxicity: a historical perspective. Reg Anesth Pain Med. 2010;35:162–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Auroy Y, Narchi P, Messiah A, Litt L, Rouvier B, Samii K. Serious complications related to regional anesthesia: results of a prospective survey in France. Anesthesiology. 1997;87:479–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Brown DL, Ransom DM, Hall JA, Leicht CH, Schroeder DR, Offord KP. Regional anesthesia and local anesthetic-induced systemic toxicity: seizure frequency and accompanying cardiovascular changes. Anesth Analg. 1995;81:321–8.PubMedGoogle Scholar
  42. 42.
    Bernards CM, Carpenter RL, Rupp SM, Brown DL, Morse BV, Morell RC, et al. Effect of midazolam and diazepam premedication on central nervous system and cardiovascular toxicity of bupivacaine in pigs. Anesthesiology. 1989;70:318–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Mather LE, Copeland SE, Ladd LA. Acute toxicity of local anesthetics: underlying pharmacokinetic and pharmacodynamic concepts. Reg Anesth Pain Med. 2005;30:553–66.PubMedGoogle Scholar
  44. 44.
    Weinberg GL. Treatment of local anesthetic systemic toxicity (LAST). Reg Anesth Pain Med. 2010;35:188–93.PubMedCrossRefGoogle Scholar
  45. 45.
    Mulroy MF, Hejtmanek MR. Prevention of local anesthetic systemic toxicity. Reg Anesth Pain Med. 2010;35:177–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Kopp SL, Horlocker TT, Warner ME, Hebl JR, Vachon CA, Schroeder DR, et al. Cardiac arrest during neuraxial anesthesia: frequency and predisposing factors associated with survival. Anesth Analg. 2005;100:855–65 (table of contents).PubMedCrossRefGoogle Scholar
  47. 47.
    Kasten GW, Martin ST. Comparison of resuscitation of sheep and dogs after bupivacaine-induced cardiovascular collapse. Anesth Analg. 1986;65:1029–32.PubMedGoogle Scholar
  48. 48.
    Neal JM, Bernards CM, Butterworth JFt, Di Gregorio G, Drasner K, Hejtmanek MR, et al. ASRA practice advisory on local anesthetic systemic toxicity. Reg Anesth Pain Med. 2010;35:152–61.PubMedCrossRefGoogle Scholar
  49. 49.
    Chadwick HS. Toxicity and resuscitation in lidocaine- or bupivacaine-infused cats. Anesthesiology. 1985;63:385–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Butterworth JFt. Models and mechanisms of local anesthetic cardiac toxicity: a review. Reg Anesth Pain Med. 2010;35:167–76.PubMedCrossRefGoogle Scholar
  51. 51.
    Di Gregorio G, Neal JM, Rosenquist RW, Weinberg GL. Clinical presentation of local anesthetic systemic toxicity: a review of published cases, 1979 to 2009. Reg Anesth Pain Med. 2010;35:181–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Freysz M, Beal JL, Timour Q, Bertrix L, Faucon G. Systemic toxicity of local anesthetics. Pharmacokinetic and pharmacodynamic factors. Ann Fr Anesth Reanim. 1988;7:181–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Siegmund JB, Wilson JH, Imhoff TE. Amiodarone interaction with lidocaine. J Cardiovasc Pharmacol. 1993;21:513–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Kuhnert BR, Zuspan KJ, Kuhnert PM, Syracuse CD, Brashear WT, Brown DE. Lack of influence of cimetidine on bupivacaine levels during parturition. Anesth Analg. 1987;66:986–90.PubMedGoogle Scholar
  55. 55.
    Mather LE, Runciman WB, Carapetis RJ, Ilsley AH, Upton RN. Hepatic and renal clearances of lidocaine in conscious and anesthetized sheep. Anesth Analg. 1986;65:943–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Bax ND, Tucker GT, Lennard MS, Woods HF. The impairment of lignocaine clearance by propranolol – major contribution from enzyme inhibition. Br J Clin Pharmacol. 1985;19:597–603.PubMedGoogle Scholar
  57. 57.
    Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept. Reg Anesth Pain Med. 2004;29:564–75 (discussion 24).PubMedGoogle Scholar
  58. 58.
    O’Donnell BD, Iohom G. An estimation of the minimum effective anesthetic volume of 2% lidocaine in ultrasound-guided axillary brachial plexus block. Anesthesiology. 2009;111:25–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Baciarello M, Danelli G, Fanelli G. Real-time ultrasound visualization of intravascular injection of local anesthetic during a peripheral nerve block. Reg Anesth Pain Med. 2009;34:278–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Neal JM, Bernards CM, Hadzic A, Hebl JR, Hogan QH, Horlocker TT, et al. ASRA practice advisory on neurologic complications in Regional Anesthesia and Pain Medicine. Reg Anesth Pain Med. 2008;33:404–15.PubMedGoogle Scholar
  61. 61.
    Sorenson EJ. Neurological injuries associated with regional anesthesia. Reg Anesth Pain Med. 2008;33:442–8.PubMedGoogle Scholar
  62. 62.
    Welch MB, Brummett CM, Welch TD, Tremper KK, Shanks AM, Guglani P, et al. Perioperative peripheral nerve injuries: a retrospective study of 380,680 cases during a 10-year period at a single institution. Anesthesiology. 2009;111:490–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Faccenda KA, Finucane BT. Complications of regional anaesthesia incidence and prevention. Drug Saf. 2001;24:413–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Freedman JM, Li DK, Drasner K, Jaskela MC, Larsen B, Wi S. Transient neurologic symptoms after spinal anesthesia: an epidemiologic study of 1,863 patients. Anesthesiology. 1998;89:633–41.PubMedCrossRefGoogle Scholar
  65. 65.
    Pollock JE. Transient neurologic symptoms: etiology, risk factors, and management. Reg Anesth Pain Med. 2002;27:581–6.PubMedGoogle Scholar
  66. 66.
    Liu SS, McDonald SB. Current issues in spinal anesthesia. Anesthesiology. 2001;94:888–906.PubMedCrossRefGoogle Scholar
  67. 67.
    Zaric D, Pace NL. Transient neurologic symptoms (TNS) following spinal anaesthesia with lidocaine versus other local anaesthetics. Cochrane Database Syst Rev. 2009;(2):CD003006Google Scholar
  68. 68.
    Bigeleisen PE. Nerve puncture and apparent intraneural injection during ultrasound-guided axillary block does not invariably result in neurologic injury. Anesthesiology. 2006;105:779–83.PubMedCrossRefGoogle Scholar
  69. 69.
    Kapur E, Vuckovic I, Dilberovic F, Zaciragic A, Cosovic E, Divanovic KA, et al. Neurologic and histologic outcome after intraneural injections of lidocaine in canine sciatic nerves. Acta Anaesthesiol Scand. 2007;51:101–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Choyce A, Chan VW, Middleton WJ, Knight PR, Peng P, McCartney CJ. What is the relationship between paresthesia and nerve stimulation for axillary brachial plexus block? Reg Anesth Pain Med. 2001;26:100–4.PubMedGoogle Scholar
  71. 71.
    Perlas A, Niazi A, McCartney C, Chan V, Xu D, Abbas S. The sensitivity of motor response to nerve stimulation and paresthesia for nerve localization as evaluated by ultrasound. Reg Anesth Pain Med. 2006;31:445–50.PubMedGoogle Scholar
  72. 72.
    Urmey WF, Stanton J. Inability to consistently elicit a motor response following sensory paresthesia during interscalene block administration. Anesthesiology. 2002;96:552–4.PubMedCrossRefGoogle Scholar
  73. 73.
    Bollini CA, Urmey WF, Vascello L, Cacheiro F. Relationship between evoked motor response and sensory paresthesia in interscalene brachial plexus block. Reg Anesth Pain Med. 2003;28:384–8.PubMedGoogle Scholar
  74. 74.
    Liu SS, Ngeow JE, Yadeau JT. Ultrasound-guided regional anesthesia and analgesia: a qualitative systematic review. Reg Anesth Pain Med. 2009;34:47–59.PubMedCrossRefGoogle Scholar
  75. 75.
    Tripathi M, Nath SS, Gupta RK. Paraplegia after intracord injection during attempted epidural steroid injection in an awake-patient. Anesth Analg. 2005;101:1209–11 (table of contents).PubMedCrossRefGoogle Scholar
  76. 76.
    Tsui BC, Armstrong K. Can direct spinal cord injury occur without paresthesia? A report of delayed spinal cord injury after epidural placement in an awake patient. Anesth Analg. 2005;101:1212–4 (table of contents).PubMedCrossRefGoogle Scholar
  77. 77.
    Borgeat A, Aguirre J, Curt A. Case scenario: neurologic complication after continuous interscalene block. Anesthesiology. 2010;112:742–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Hogan Q, Dotson R, Erickson S, Kettler R, Hogan K. Local anesthetic myotoxicity: a case and review. Anesthesiology. 1994;80:942–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Zink W, Graf BM. Local anesthetic myotoxicity. Reg Anesth Pain Med. 2004;29:333–40.PubMedGoogle Scholar
  80. 80.
    Zink W, Bohl JR, Hacke N, Sinner B, Martin E, Graf BM. The long term myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blocks. Anesth Analg. 2005;101:548–54 (table of contents).PubMedCrossRefGoogle Scholar
  81. 81.
    Zink W, Seif C, Bohl JR, Hacke N, Braun PM, Sinner B, et al. The acute myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blockades. Anesth Analg. 2003;97:1173–9 (table of contents).PubMedCrossRefGoogle Scholar
  82. 82.
    Zink W, Missler G, Sinner B, Martin E, Fink RH, Graf BM. Differential effects of bupivacaine and ropivacaine enantiomers on intracellular Ca2+ regulation in murine skeletal muscle fibers. Anesthesiology. 2005;102:793–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Irwin W, Fontaine E, Agnolucci L, Penzo D, Betto R, Bortolotto S, et al. Bupivacaine myotoxicity is mediated by mitochondria. J Biol Chem. 2002;277:12221–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Zink W, Graf BM, Sinner B, Martin E, Fink RH, Kunst G. Differential effects of bupivacaine on intracellular Ca2+ regulation: potential mechanisms of its myotoxicity. Anesthesiology. 2002;97:710–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Wakata N, Sugimoto H, Iguchi H, Nomoto N, Kinoshita M. Bupivacaine hydrochloride induces muscle fiber necrosis and hydroxyl radical formation-dimethyl sulphoxide reduces hydroxyl radical formation. Neurochem Res. 2001;26:841–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Nouette-Gaulain K, Bellance N, Prevost B, Passerieux E, Pertuiset C, Galbes O, et al. Erythropoietin protects against local anesthetic myotoxicity during continuous regional analgesia. Anesthesiology. 2009;110:648–59.PubMedCrossRefGoogle Scholar
  87. 87.
    Sztark F, Malgat M, Dabadie P, Mazat JP. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology. 1998;88:1340–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Nouette-Gaulain K, Sirvent P, Canal-Raffin M, Morau D, Malgat M, Molimard M, et al. Effects of intermittent femoral nerve injections of bupivacaine, levobupivacaine, and ropivacaine on mitochondrial energy metabolism and intracellular calcium homeostasis in rat psoas muscle. Anesthesiology. 2007;106:1026–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Nouette-Gaulain K, Dadure C, Morau D, Pertuiset C, Galbes O, Hayot M, et al. Age-dependent bupivacaine-induced muscle toxicity during continuous peripheral nerve block in rats. Anesthesiology. 2009;111:1120–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Bailie DS, Ellenbecker TS. Severe chondrolysis after shoulder arthroscopy: a case series. J Shoulder Elbow Surg. 2009;18:742–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Chu CR, Izzo NJ, Papas NE, Fu FH. In vitro exposure to 0.5% bupivacaine is cytotoxic to bovine articular chondrocytes. Arthroscopy. 2006;22:693–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Rapley JH, Beavis RC, Barber FA. Glenohumeral chondrolysis after shoulder arthroscopy associated with continuous bupivacaine infusion. Arthroscopy. 2009;25:1367–73.PubMedCrossRefGoogle Scholar
  93. 93.
    Busfield BT, Romero DM. Pain pump use after shoulder arthroscopy as a cause of glenohumeral chondrolysis. Arthroscopy. 2009;25:647–52.PubMedCrossRefGoogle Scholar
  94. 94.
    Seshadri V, Coyle CH, Chu CR. Lidocaine potentiates the chondrotoxicity of methylprednisolone. Arthroscopy. 2009;25:337–47.PubMedCrossRefGoogle Scholar
  95. 95.
    Anz A, Smith MJ, Stoker A, Linville C, Markway H, Branson K, et al. The effect of bupivacaine and morphine in a coculture model of diarthrodial joints. Arthroscopy. 2009;25:225–31.PubMedCrossRefGoogle Scholar
  96. 96.
    Amsler E, Flahault A, Mathelier-Fusade P, Aractingi S. Evaluation of re-challenge in patients with suspected lidocaine allergy. Dermatology. 2004;208:109–11.PubMedCrossRefGoogle Scholar
  97. 97.
    Hein UR, Chantraine-Hess S, Worm M, Zuberbier T, Henz BM. Evaluation of systemic provocation tests in patients with suspected allergic and pseudoallergic drug reactions. Acta Derm Venereol. 1999;79:139–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Horlocker TT, Wedel DJ, Rowlingson JC, Enneking FK, Kopp SL, Benzon HT, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med. 2010;35:64–101.PubMedCrossRefGoogle Scholar
  99. 99.
    Horlocker TT, Wedel DJ, Rowlingson JC, Enneking FK. Executive summary: regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med. 2010;35:102–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Carp H, Bailey S. The association between meningitis and dural puncture in bacteremic rats. Anesthesiology. 1992;76:739–42.PubMedCrossRefGoogle Scholar
  101. 101.
    Heavner JE. Local anesthetics. Curr Opin Anaesthesiol. 2007;20:336–42.PubMedCrossRefGoogle Scholar
  102. 102.
    Hadzic A, Dilberovic F, Shah S, Kulenovic A, Kapur E, Zaciragic A, et al. Combination of intraneural injection and high injection pressure leads to fascicular injury and neurologic deficits in dogs. Reg Anesth Pain Med. 2004;29:417–23.PubMedGoogle Scholar
  103. 103.
    Jankovic D, Wells C. Brachial plexus. In: Jankovic D, Wells C, editors. Regional Nerve Blocks. Berlin: Blackwell Science; 2001. p. 58–86.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jose A. Aguirre
    • 1
  • Gina Votta-Velis
    • 2
  • Alain Borgeat
    • 1
  1. 1.Division of AnesthesiologyBalgrist University Hospital ZurichZurichSwitzerland
  2. 2.Department of AnesthesiaUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations