Skip to main content

Understanding the Epithelial Barrier in Inflammatory Bowel Disease

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis

Abstract

Appropriate function of the intestinal epithelial barrier is critical for maintaining a balance between potentially noxious luminal contents of the gut and the mucosal immune system. Defects in barrier function are associated with both Crohn’s disease and ulcerative colitis, and are also present in some healthy first-degree relatives. Impaired barrier function is associated with increased risk of Crohn’s disease relapse of patients in clinical remission. The tight junction, which seals the space between adjacent epithelial cells, is the primary determinant of permeability in the absence of epithelial injury, e.g., ulceration. The tight junction is formed by a complex of occludin, claudins, ZO-1, and the actin cytoskeleton; the interactions between components are dynamically regulated to modify paracellular flux. The functional properties of the tight junction are regulated both by physiological stimuli and by cytokines, e.g., TNF, IFNγ (gamma), and IL-13. Under pathological conditions, increased paracellular permeability in response to cytokine production may allow luminal material to access the lamina propria, further activating immune responses and continuing the cycle of barrier dysfunction and inflammation. This model predicts that the tight junction may play a central role in inflammatory bowel disease by balancing the mucosal immune response with the luminal microbiota. As such, the potential of the tight junction as a target for therapeutic intervention should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moehle C, Ackermann N, Langmann T, et al. Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease. J Mol Med. 2006;84(12):1055–66.

    Article  PubMed  CAS  Google Scholar 

  2. Shaoul R, Okada Y, Cutz E, Marcon MA. Colonic expression of MUC2, MUC5AC, and TFF1 in inflammatory bowel disease in children. J Pediatr Gastroenterol Nutr. 2004;38(5):488–93.

    Article  PubMed  CAS  Google Scholar 

  3. Heazlewood CK, Cook MC, Eri R, et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 2008;5(3):e54.

    Article  PubMed  Google Scholar 

  4. Van der Sluis M, De Koning BA, De Bruijn AC, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterol. 2006;131(1):117–29.

    Article  Google Scholar 

  5. An G, Wei B, Xia B, et al. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med. 2007;204(6):1417–29.

    Article  PubMed  CAS  Google Scholar 

  6. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA. 2008;105(39):15064–9.

    Article  PubMed  CAS  Google Scholar 

  7. Pearson AD, Eastham EJ, Laker MF, Craft AW, Nelson R. Intestinal permeability in children with Crohn’s disease and coeliac disease. Br Med J (Clin Res Ed). 1982;285(6334):20–1.

    Article  CAS  Google Scholar 

  8. Ukabam SO, Clamp JR, Cooper BT. Abnormal small intestinal permeability to sugars in patients with Crohn’s disease of the terminal ileum and colon. Digestion. 1983;27(2):70–4.

    Article  PubMed  CAS  Google Scholar 

  9. Hollander D. Crohn’s disease – a permeability disorder of the tight junction? Gut. 1988;29(12):1621–4.

    Article  PubMed  CAS  Google Scholar 

  10. Schulzke JD, Bentzel CJ, Schulzke I, Riecken EO, Fromm M. Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatr Res. 1998;43(4 Pt 1):435–41.

    Article  PubMed  CAS  Google Scholar 

  11. Madara JL, Trier JS. Structural abnormalities of jejunal epithelial cell membranes in celiac sprue. Lab Invest. 1980;43(3):254–61.

    PubMed  CAS  Google Scholar 

  12. Jenkins RT, Ramage JK, Jones DB, Collins SM, Goodacre RL, Hunt RH. Small bowel and colonic permeability to 51Cr-EDTA in patients with active inflammatory bowel disease. Clin Invest Med. 1988;11(2):151–5.

    PubMed  CAS  Google Scholar 

  13. Bijlsma PB, Peeters RA, Groot JA, Dekker PR, Taminiau JA, Van Der Meer R. Differential in vivo and in vitro intestinal permeability to lactulose and mannitol in animals and humans: a hypothesis. Gastroenterol. 1995;108(3):687–96.

    Article  CAS  Google Scholar 

  14. Arslan G, Atasever T, Cindoruk M, Yildirim IS. (51)CrEDTA colonic permeability and therapy response in patients with ulcerative colitis. Nucl Med Commun. 2001;22(9):997–1001.

    Article  PubMed  CAS  Google Scholar 

  15. Bjarnason I. Intestinal permeability. Gut. 1994;35(1 Suppl):S18–22.

    Article  PubMed  CAS  Google Scholar 

  16. Keighley MR, Taylor EW, Hares MM, et al. Influence of oral mannitol bowel preparation on colonic microflora and the risk of explosion during endoscopic diathermy. Br J Surg. 1981;68(8):554–6.

    Article  PubMed  CAS  Google Scholar 

  17. Vince A, Killingley M, Wrong OM. Effect of lactulose on ammonia production in a fecal incubation system. Gastroenterol. 1978;74(3):544–9.

    CAS  Google Scholar 

  18. Katz KD, Hollander D, Vadheim CM, et al. Intestinal permeability in patients with Crohn’s disease and their healthy relatives. Gastroenterol. 1989;97(4):927–31.

    CAS  Google Scholar 

  19. May GR, Sutherland LR, Meddings JB. Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterol. 1993;104(6):1627–32.

    CAS  Google Scholar 

  20. Buhner S, Buning C, Genschel J, et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut. 2006;55(3):342–7.

    Article  PubMed  CAS  Google Scholar 

  21. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.

    Article  PubMed  CAS  Google Scholar 

  22. Irvine EJ, Marshall JK. Increased intestinal permeability precedes the onset of Crohn’s disease in a subject with familial risk. Gastroenterol. 2000;119(6):1740–4.

    Article  CAS  Google Scholar 

  23. Wyatt J, Vogelsang H, Hubl W, Waldhoer T, Lochs H. Intestinal permeability and the prediction of relapse in Crohn’s disease. Lancet. 1993;341(8858):1437–9.

    Article  PubMed  CAS  Google Scholar 

  24. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778(3):660–9.

    Article  PubMed  CAS  Google Scholar 

  25. Hermiston ML, Gordon JI. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science. 1995;270(5239):1203–7.

    Article  PubMed  CAS  Google Scholar 

  26. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62.

    Article  PubMed  CAS  Google Scholar 

  27. Schmitz H, Barmeyer C, Fromm M, et al. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterol. 1999;116(2):301–9.

    Article  CAS  Google Scholar 

  28. Prasad S, Mingrino R, Kaukinen K, et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest. 2005;85:1139–62.

    Article  PubMed  CAS  Google Scholar 

  29. Blair SA, Kane SV, Clayburgh DR, Turner JR. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest. 2006;86(2):191–201.

    Article  PubMed  CAS  Google Scholar 

  30. Zeissig S, Burgel N, Gunzel D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  31. Amasheh S, Meiri N, Gitter AH, et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 2002;115(Pt 24):4969–76.

    Article  PubMed  CAS  Google Scholar 

  32. Weber CR, Raleigh DR, Su L, et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem. 2010;285(16):12037–46.

    Article  PubMed  CAS  Google Scholar 

  33. Clayburgh DR, Barrett TA, Tang Y, et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest. 2005;115(10):2702–15.

    Article  PubMed  CAS  Google Scholar 

  34. Marchiando AM, Shen L, Graham WV, et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol. 2010;189(1):111–26.

    Article  PubMed  CAS  Google Scholar 

  35. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140(1):12–9.

    Article  PubMed  CAS  Google Scholar 

  36. Schwarz BT, Wang F, Shen L, et al. LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterol. 2007;132(7):2383–94.

    Article  CAS  Google Scholar 

  37. Al-Sadi R, Ye D, Dokladny K, Ma TY. Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability. J Immunol. 2008;180(8):5653–61.

    PubMed  CAS  Google Scholar 

  38. Al-Sadi R, Ye D, Said HM, Ma TY. Cellular and molecular mechanism of interleukin-1beta modulation of CACO-2 intestinal epithelial tight junction barrier. J Cell Mol Med. Apr 7 2010.[Epub ahed of print].

    Google Scholar 

  39. Tedde A, Laura Putignano A, Bagnoli S, et al. Interleukin-10 promoter polymorphisms influence susceptibility to ulcerative colitis in a gender-specific manner. Scand J Gastroenterol. 2008;43(6):712–8.

    Article  PubMed  CAS  Google Scholar 

  40. Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.

    Article  PubMed  CAS  Google Scholar 

  41. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74.

    Article  PubMed  CAS  Google Scholar 

  42. Madsen KL, Malfair D, Gray D, Doyle JS, Jewell LD, Fedorak RN. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis. 1999;5(4):262–70.

    Article  PubMed  CAS  Google Scholar 

  43. Hale LP, Gottfried MR, Swidsinski A. Piroxicam treatment of IL-10-deficient mice enhances colonic epithelial apoptosis and mucosal exposure to intestinal bacteria. Inflamm Bowel Dis. 2005;11(12):1060–9.

    Article  PubMed  Google Scholar 

  44. Narushima S, Spitz DR, Oberley LW, et al. Evidence for oxidative stress in NSAID-induced colitis in IL10−/− mice. Free Radic Biol Med. 2003;34(9):1153–66.

    Article  PubMed  CAS  Google Scholar 

  45. Gradel KO, Nielsen HL, Schonheyder HC, Ejlertsen T, Kristensen B, Nielsen H. Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterol. 2009;137(2):495–501.

    Article  Google Scholar 

  46. Olson TS, Reuter BK, Scott KG, et al. The primary defect in experimental ileitis originates from a nonhematopoietic source. J Exp Med. 2006;203(3):541–52.

    Article  PubMed  CAS  Google Scholar 

  47. Woodfin A, Reichel CA, Khandoga A, et al. JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. Blood. 2007;110(6):1848–56.

    Article  PubMed  CAS  Google Scholar 

  48. Laukoetter MG, Nava P, Lee WY, et al. JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med. 2007;204(13):3067–76.

    Article  PubMed  CAS  Google Scholar 

  49. Su L, Shen L, Clayburgh DR, et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterol. 2009;136(2):551–63.

    Article  CAS  Google Scholar 

  50. Boirivant M, Amendola A, Butera A, et al. A transient breach in the epithelial barrier leads to regulatory T-cell generation and resistance to experimental colitis. Gastroenterol. 2008;135:1612–23.

    Article  CAS  Google Scholar 

  51. Arrieta MC, Madsen K, Doyle J, Meddings J. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut. 2009;58(1):41–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory is supported by U.S. National Institutes of Health (R01DK61931, R01DK68271, P01DK67887, and F32DK091017), the University of Chicago Digestive Disease Research Core Center (NIH P30DK42086), the University of Chicago Cancer Center (P30CA14599), the University of Chicago Institute for Translational Medicine (NIH UL1RR024999), the U.S. Department of Defense (W81XWH-09-1-0341), the Broad Medical Research Foundation, and the Crohn’s and Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrold R. Turner MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bradford, E.M., Turner, E.S., Turner, J.R. (2012). Understanding the Epithelial Barrier in Inflammatory Bowel Disease. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0998-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0998-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0997-7

  • Online ISBN: 978-1-4614-0998-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics