Skip to main content

Immunobiology of Epithelial Cells in Inflammatory Bowel Disease

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis

Abstract

The epithelium of the GI tract, which represents the greatest body surface area, is constantly exposed to the outside environment. The intestinal epithelium forms barriers that are essential to life. It supports nutrient and water transport while preventing microbial invasion. Intestinal epithelial cells (IECs) sit at the interface between an antigen-rich lumen and a lymphocyte-rich lamina propria (LPLs). IECs have the capacity to discriminate between “peaceful and harmful” antigens and to carry the information on to the LPLs, thereby activating populations of unique regulatory T cells. The epithelium is constantly sampling luminal contents and making molecular adjustments at to them. These molecular changes impose key decisions on innate and adaptive immune cells. The crosstalk that occurs between the epithelium and the immune compartments serves to maintain intestinal homeostasis. The complex integration and execution of these functions will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahan S, Roda G, Pinn D, Roth-Walter F, Kamalu O, Martin AP, et al. Epithelial: lamina propria lymphocyte interactions promote epithelial cell differentiation. Gastroenterology. 2008;134(1):192–203.

    Article  PubMed  CAS  Google Scholar 

  2. Shao L, Kamalu O, Mayer L. Non-classical MHC class I molecules on intestinal epithelial cells: mediators of mucosal crosstalk. Immunol Rev. 2005;206:160–76.

    Article  PubMed  CAS  Google Scholar 

  3. Abreu MT, Fukata M, Arditi M. TLR signaling in the gut in health and disease. J Immunol. 2005;174(8):4453–60.

    PubMed  CAS  Google Scholar 

  4. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing toll-like receptors. J Immunol. 2000;164(2):966–72.

    PubMed  CAS  Google Scholar 

  5. Hornef MW, Normark BH, Vandewalle A, Normark S. Intracellular recognition of lipopolysaccharide by Toll-like receptor 4 in intestinal epithelial cells. J Exp Med. 2003;198(8):1225–35.

    Article  PubMed  CAS  Google Scholar 

  6. Hornef MW, Frisan T, Vandewalle A, Normark S, Richter-Dahlfors A. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med. 2002;195(5):559–70.

    Article  PubMed  CAS  Google Scholar 

  7. Abreu MT, Vora P, Faure E, Thomas LS, Arnold ET, Arditi M. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol. 2001;167(3):1609–16.

    PubMed  CAS  Google Scholar 

  8. Melmed G, Thomas LS, Lee N, Tesfay SY, Lukasek K, Michelsen KS, et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J Immunol. 2003;170(3):1406–15.

    PubMed  CAS  Google Scholar 

  9. Hershberg RM. The epithelial cell cytoskeleton and intracellular trafficking. V. Polarized compartmentalization of antigen processing and Toll-like receptor signaling in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2002;283(4):G833–9.

    PubMed  CAS  Google Scholar 

  10. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–41.

    Article  PubMed  CAS  Google Scholar 

  11. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007;132(4):1359–74.

    Article  PubMed  CAS  Google Scholar 

  12. Kim JY, Kajino-Sakamoto R, Omori E, Jobin C, Ninomiya-Tsuji J. Intestinal epithelial-derived TAK1 signaling is essential for cytoprotection against chemical-induced colitis. PLoS One. 2009;4(2):e4561.

    Article  PubMed  Google Scholar 

  13. Ramasundara M, Leach ST, Lemberg DA, Day AS. Defensins and inflammation: the role of defensins in inflammatory bowel disease. J Gastroenterol Hepatol. 2009;24(2):202–8.

    Article  PubMed  CAS  Google Scholar 

  14. Cunliffe RN. Alpha-defensins in the gastrointestinal tract. Mol Immunol. 2003;40(7):463–7.

    Article  PubMed  CAS  Google Scholar 

  15. Tanabe H, Ayabe T, Maemoto A, Ishikawa C, Inaba Y, Sato R, et al. Denatured human alpha-defensin attenuates the bactericidal activity and the stability against enzymatic digestion. Biochem Biophys Res Commun. 2007;358(1):349–55.

    Article  PubMed  CAS  Google Scholar 

  16. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307(5710):731–4.

    Article  PubMed  CAS  Google Scholar 

  17. Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. J Exp Med. 2007;204(8):1891–900.

    Article  PubMed  CAS  Google Scholar 

  18. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446(7135):557–61.

    Article  PubMed  CAS  Google Scholar 

  19. Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem. 2006;281(4):2005–11.

    Article  PubMed  CAS  Google Scholar 

  20. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut. 2004;53(11):1658–64.

    Article  PubMed  CAS  Google Scholar 

  21. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology. 2003;125(1):47–57.

    Article  PubMed  CAS  Google Scholar 

  22. Allen IC, TeKippe EM, Woodford RMT, Uronis JM, Holl EK, Rogers AB, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207(5):1045–56.

    Article  PubMed  CAS  Google Scholar 

  23. Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KSB, McIntire CR, LeBlanc PM, et al. Control of Intestinal Homeostasis, Colitis, and Colitis-Associated Colorectal Cancer by the Inflammatory Caspases. Immunity. 2010;32(3):367–78.

    Article  PubMed  CAS  Google Scholar 

  24. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 Inflammasome Protects against Loss of Epithelial Integrity and Mortality during Experimental Colitis. Immunity. 2010;32(3):379–91.

    Article  PubMed  CAS  Google Scholar 

  25. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1(3):183–97.

    Article  PubMed  CAS  Google Scholar 

  26. Podolsky DK, Gerken G, Eyking A, Cario E. Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology. 2009;137(1):209–20.

    Article  PubMed  CAS  Google Scholar 

  27. Iwashita J, Sato Y, Sugaya H, Takahashi N, Sasaki H, Abe T. mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol Cell Biol. 2003;81(4):275–82.

    Article  PubMed  CAS  Google Scholar 

  28. Itzkowitz S. Colon carcinogenesis in inflammatory bowel disease: applying molecular genetics to clinical practice. J Clin Gastroenterol. 2003;36 Suppl 5:S70–4. discussion S94–6.

    Article  PubMed  CAS  Google Scholar 

  29. Mallegol J, Van Niel G, Lebreton C, Lepelletier Y, Candalh C, Dugave C, et al. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology. 2007;132(5):1866–76.

    Article  PubMed  CAS  Google Scholar 

  30. Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, Lencer WI, et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: Implications for microbial attachment and oral vaccine targeting. J Exp Med. 1996;184(3):1045–59.

    Article  PubMed  CAS  Google Scholar 

  31. Neutra MR. Current Concepts in Mucosal Immunity – V. Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol-Gastr L. 1998;37(5):G785–91.

    Google Scholar 

  32. Gonnella PA, Wilmore DW. Colocalization of Class-Ii Antigen and Exogenous Antigen in the Rat Enterocyte. J Cell Sci. 1993;106:937–40.

    PubMed  CAS  Google Scholar 

  33. Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303(5664):1662–5.

    Article  PubMed  CAS  Google Scholar 

  34. Duerkop BA, Vaishnava S, Hooper LV. Immune Responses to the Microbiota at the Intestinal Mucosal Surface. Immunity. 2009;31(3):368–76.

    Article  PubMed  CAS  Google Scholar 

  35. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3(4):331–41.

    Article  PubMed  CAS  Google Scholar 

  36. Faria AMC, Weiner HL. Oral tolerance. Immunol Rev. 2005;206:232–59.

    Article  PubMed  CAS  Google Scholar 

  37. Tsuji NM, Kosaka A. Oral tolerance: intestinal homeostasis and antigen-specific regulatory T cells. Trends Immunol. 2008;29(11):532–40.

    Article  PubMed  CAS  Google Scholar 

  38. Chehade M, Mayer L. Oral tolerance and its relation to food hypersensitivities. J Allergy Clin Immunol. 2005;115(1):3–12. quiz 3.

    Article  PubMed  Google Scholar 

  39. Walker WA, Isselbacher KJ. Uptake and transport of macromolecules by the intestine. Possible role in clinical disorders. Gastroenterology. 1974;67(3):531–50.

    PubMed  CAS  Google Scholar 

  40. Warshaw AL, Walker WA, Isselbacher KJ. Protein uptake by the intestine: evidence for absorption of intact macromolecules. Gastroenterology. 1974;66(5):987–92.

    PubMed  CAS  Google Scholar 

  41. Zimmer KP, Buning J, Weber P, Kaiserlian D, Strobel S. Modulation of antigen trafficking to MHC class II-positive late endosomes of enterocytes. Gastroenterology. 2000;118(1):128–37.

    Article  PubMed  CAS  Google Scholar 

  42. Westendorf AM, Fleissner D, Groebe L, Jung S, Gruber AD, Hansen W, et al. CD4(+)Foxp3(+) regulatory T cell expansion induced by antigen-driven interaction with intestinal epithelial cells independent of local dendritic cells. Gut. 2009;58(2):211–9.

    Article  PubMed  CAS  Google Scholar 

  43. Rimoldi M, Chieppa M, Salucci V, Avogadri F, Sonzogni A, Sampietro GM, et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol. 2005;6(5):507–14.

    Article  PubMed  CAS  Google Scholar 

  44. Iliev ID, Mileti E, Matteoli G, Chieppa M, Rescigno M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2009;2(4):340–50.

    Article  PubMed  CAS  Google Scholar 

  45. Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut. 2009;58(11):1481–9.

    Article  PubMed  CAS  Google Scholar 

  46. Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol. 2004;4(12):953–64.

    Article  PubMed  CAS  Google Scholar 

  47. Buning J, Schmitz M, Repenning B, Ludwig D, Schmidt MA, Strobel S, et al. Interferon-gamma mediates antigen trafficking to MHC class II-positive late endosomes of enterocytes. Eur J Immunol. 2005;35(3):831–42.

    Article  PubMed  Google Scholar 

  48. Hershberg RM, Cho DH, Youakim A, Bradley MB, Lee JS, Framson PE, et al. Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J Clin Invest. 1998;102(4):792–803.

    Article  PubMed  CAS  Google Scholar 

  49. Hershberg RM, Framson PE, Cho DH, Lee LY, Kovats S, Beitz J, et al. Intestinal epithelial cells use two distinct pathways for HLA class II antigen processing. J Clin Invest. 1997;100(1):204–15.

    Article  PubMed  CAS  Google Scholar 

  50. Nakazawa A, Dotan I, Brimnes J, Allez M, Shao L, Tsushima F, et al. The expression and function of costimulatory molecules B7h and B7-H1 on colonic epithelial cells. Gastroenterology. 2004;126(5):1347–57.

    Article  PubMed  CAS  Google Scholar 

  51. Hershberg RM, Mayer LF. Antigen processing and presentation by intestinal epithelial cells - polarity and complexity. Immunol Today. 2000;21(3):123–8.

    Article  PubMed  CAS  Google Scholar 

  52. Powrie F. T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity. 1995;3(2):171–4.

    Article  PubMed  CAS  Google Scholar 

  53. Mizoguchi A, Mizoguchi E, Bhan AK. Immune networks in animal models of inflammatory bowel disease. Inflamm Bowel Dis. 2003;9(4):246–59.

    Article  PubMed  Google Scholar 

  54. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993;75(2):253–61.

    Article  PubMed  CAS  Google Scholar 

  55. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74.

    Article  PubMed  CAS  Google Scholar 

  56. Morrissey PJ, Charrier K, Braddy S, Liggitt D, Watson JD. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med. 1993;178(1):237–44.

    Article  PubMed  CAS  Google Scholar 

  57. Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1994;1(7):553–62.

    Article  PubMed  CAS  Google Scholar 

  58. Mudter J, Neurath MF. Mucosal T cells: mediators or guardians of inflammatory bowel disease? Curr Opin Gastroenterol. 2003;19(4):343–9.

    Article  PubMed  CAS  Google Scholar 

  59. Roda G, Dahan S, Mezzanotte L, Caponi A, Roth-Walter F, Pinn D, et al. Defect in CEACAM family member expression in Crohn’s disease IECs is regulated by the transcription factor SOX9. Inflamm Bowel Dis. 2009;15(12):1775–83.

    Article  PubMed  Google Scholar 

  60. Allez M, Mayer L. Regulatory T cells: peace keepers in the gut. Inflamm Bowel Dis. 2004;10(5):666–76.

    Article  PubMed  Google Scholar 

  61. Allez M, Brimnes J, Dotan I, Mayer L. Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells. Gastroenterology. 2002;123(5):1516–26.

    Article  PubMed  Google Scholar 

  62. Allez M, Brimnes J, Shao L, Dotan I, Nakazawa A, Mayer L. Activation of a unique population of CD8(+) T cells by intestinal epithelial cells. Ann N Y Acad Sci. 2004;1029:22–35.

    Article  PubMed  CAS  Google Scholar 

  63. Brimnes J, Allez M, Dotan I, Shao L, Nakazawa A, Mayer L. Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol. 2005;174(9):5814–22.

    PubMed  CAS  Google Scholar 

  64. Kraus TA, Toy L, Chan L, Childs J, Cheifetz A, Mayer L. Failure to induce oral tolerance in Crohn’s and ulcerative colitis patients: possible genetic risk. Ann N Y Acad Sci. 2004;1029:225–38.

    Article  PubMed  CAS  Google Scholar 

  65. Kraus TA, Toy L, Chan L, Childs J, Mayer L. Failure to induce oral tolerance to a soluble protein in patients with inflammatory bowel disease. Gastroenterology. 2004;126(7):1771–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd Mayer MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dahan, S., Denmark, V.K., Mayer, L. (2012). Immunobiology of Epithelial Cells in Inflammatory Bowel Disease. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0998-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0998-4_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0997-7

  • Online ISBN: 978-1-4614-0998-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics