Skip to main content

Contractile Tail Machines of Bacteriophages

  • Chapter
  • First Online:
Viral Molecular Machines

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 726))

Abstract

Bacteriophages with contractile tails epitomize the concepts of “virus” and “phage” for many because the tails of these phages undergo a large conformational change – resembling the action of a syringe – upon the attachment to the host cell. The contractile tails belong to the recently recognized class of “contractile systems,” which includes phage tails, their close relatives R-type pyocins, the bacterial type VI secretion system, and the virulence cassette of Photorhabdus. Their function is to deliver large proteins and/or DNA into the cytoplasm of a bacterial or eukaryotic cell. The structure of the core components of all contractile tail-like systems is conserved, but the corresponding genes have diverged to such a degree that the common ancestry can no longer be easily detected at the level of amino acid sequence. At present, it is unclear, whether the contractile systems originated in bacteria or in phages. This chapter describes the structure and function of phage contractile tails and compares them with other phage tails and with other known contractile systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuladze NK, Gingery M, Tsai J, Eiserling FA (1994) Tail length determination in bacteriophage T4. Virology 199:301–310

    Article  PubMed  CAS  Google Scholar 

  • Ackermann HW (2003) Bacteriophage observations and evolution. Res Microbiol 154:245–251

    Article  PubMed  CAS  Google Scholar 

  • Aksyuk AA, Leiman PG, Kurochkina LP, Shneider MM, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG (2009a) The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J 28:821–829

    Article  PubMed  CAS  Google Scholar 

  • Aksyuk AA, Leiman PG, Shneider MM, Mesyanzhinov VV, Rossmann MG (2009b) The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate. Structure 17:800–808

    Article  PubMed  CAS  Google Scholar 

  • Arisaka F, Tschopp J, Van Driel R, Engel J (1979) Reassembly of the bacteriophage T4 tail from the core-baseplate and the monomeric sheath protein P18: a co-operative association process. J Mol Biol 132:369–386

    Article  PubMed  CAS  Google Scholar 

  • Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, Fox GC, van Raaij MJ (2010) Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc Natl Acad Sci USA 107:20287–20292

    Article  PubMed  CAS  Google Scholar 

  • Boulanger P, Jacquot P, Plancon L, Chami M, Engel A, Parquet C, Herbeuval C, Letellier L (2008) Phage T5 straight tail fiber is a multifunctional protein acting as a tape measure and carrying fusogenic and muralytic activities. J Biol Chem 283:13556–13564

    Article  PubMed  CAS  Google Scholar 

  • Coombs DH, Arisaka F (1994) T4 tail structure and function. In: Karam JD (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 259–281

    Google Scholar 

  • Coombs DH, Eiserling FA (1977) Studies on the structure, protein composition and assembly of the neck of bacteriophage T4. J Mol Biol 116:375–405

    Article  PubMed  CAS  Google Scholar 

  • Filloux A, Hachani A, Bleves S (2008) The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154:1570–1583

    Article  PubMed  CAS  Google Scholar 

  • Fokine A, Chipman PR, Leiman PG, Mesyanzhinov VV, Rao VB, Rossmann MG (2004) Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci USA 101:6003–6008

    Article  PubMed  CAS  Google Scholar 

  • Haggard-Ljungquist E, Jacobsen E, Rishovd S, Six EW, Nilssen O, Sunshine MG, Lindqvist BH, Kim KJ, Barreiro V, Koonin EV, Calendar R (1995) Bacteriophage P2: genes involved in baseplate assembly. Virology 213:109–121

    Article  PubMed  CAS  Google Scholar 

  • Hurst MR, Beard SS, Jackson TA, Jones SM (2007) Isolation and characterization of the Serratia entomophila antifeeding prophage. FEMS Microbiol Lett 270:42–48

    Article  PubMed  CAS  Google Scholar 

  • Hurst MR, Glare TR, Jackson TA (2004) Cloning Serratia entomophila antifeeding genes – a putative defective prophage active against the grass grub Costelytra zealandica. J Bacteriol 186:5116–5128

    Article  PubMed  CAS  Google Scholar 

  • Jacob F (1954) Biosynthèse induite et mode d’action d’une pyocin, antibiotique de Pseudomonas pyocyanea. Ann Inst Pasteur (Paris) 86:149–160

    CAS  Google Scholar 

  • Kahn ML, Ziermann R, Deho G, Ow DW, Sunshine MG, Calendar R (1991) Bacteriophage P2 and P4. Methods Enzymol 204:264–280

    Article  PubMed  CAS  Google Scholar 

  • Kanamaru S, Ishiwata Y, Suzuki T, Rossmann MG, Arisaka F (2005) Control of bacteriophage T4 tail lysozyme activity during the infection process. J Mol Biol 346:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, Rossmann MG (2002) Structure of the cell-puncturing device of bacteriophage T4. Nature 415:553–557

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, King J (1975a) Assembly of the tail of bacteriophage T4. J Supramol Struct 3:24–38

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, King J (1975b) Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. J Mol Biol 99:645–672

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, King J (1975c) Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. J Mol Biol 99:673–694

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, King J (1975d) Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J Mol Biol 99:695–716

    Article  PubMed  CAS  Google Scholar 

  • King J (1968) Assembly of the tail of bacteriophage T4. J Mol Biol 32:231–262

    Article  PubMed  CAS  Google Scholar 

  • Kohler T, Donner V, van Delden C (2010) Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. J Bacteriol 192:1921–1928

    Article  PubMed  CAS  Google Scholar 

  • Kondou Y, Kitazawa D, Takeda S, Tsuchiya Y, Yamashita E, Mizuguchi M, Kawano K, Tsukihara T (2005) Structure of the central hub of bacteriophage Mu baseplate determined by X-ray crystallography of gp44. J Mol Biol 352:976–985

    Article  PubMed  CAS  Google Scholar 

  • Kostyuchenko VA, Chipman PR, Leiman PG, Arisaka F, Mesyanzhinov VV, Rossmann MG (2005) The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol 12:810–813

    Article  PubMed  CAS  Google Scholar 

  • Kostyuchenko VA, Leiman PG, Chipman PR, Kanamaru S, van Raaij MJ, Arisaka F, Mesyanzhinov VV, Rossmann MG (2003) Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Biol 10:688–693

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsova TA, Efimov AV, Aijrich LG, Kireeva IY, Marusich EI, Cappuccinelli P, Fiori P, Rappelli P, Kurochkina LP, Poglazov BF, Mesyanzhinov VV (1998) Properties of recombinant bacteriophage T4 tail sheath protein and its deletion fragments. Biochemistry (Mosc) 63:702–709

    CAS  Google Scholar 

  • Leblanc C, Caumont-Sarcos A, Comeau AM, Krisch HM (2009) Isolation and genomic characterization of the first phage infecting Iodobacteria: phi PLPE, a myovirus having a novel set of features. Environ Microbiol Rep 1:499–509

    Article  CAS  Google Scholar 

  • Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG (2010) Morphogenesis of the T4 tail and tail fibers. Virol J 7:355

    Article  PubMed  CAS  Google Scholar 

  • Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106:4154–4159

    Article  PubMed  CAS  Google Scholar 

  • Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Muhlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ (2007) The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J Mol Biol 371:836–849

    Article  PubMed  CAS  Google Scholar 

  • Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG (2004) Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118:419–429

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Sano Y, Ishihara H, Shinomiya T (1993) Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J Bacteriol 175:1257–1263

    PubMed  CAS  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  PubMed  CAS  Google Scholar 

  • Moody MF (1967a) Structure of the sheath of bacteriophage T4. I. Structure of the contracted sheath and polysheath. J Mol Biol 25:167–200

    Article  PubMed  CAS  Google Scholar 

  • Moody MF (1967b) Structure of the sheath of bacteriophage T4. II. Rearrangement of the sheath subunits during contraction. J Mol Biol 25:201–208

    Article  PubMed  CAS  Google Scholar 

  • Moody MF (1973) Sheath of bacteriophage T4. 3. Contraction mechanism deduced from partially contracted sheaths. J Mol Biol 80:613–635

    Article  PubMed  CAS  Google Scholar 

  • Mosig G, Lin GW, Franklin J, Fan WH (1989) Functional relationships and structural determinants of two bacteriophage T4 lysozymes: a soluble (gene e) and a baseplate-associated (gene 5) protein. New Biol 1:171–179

    PubMed  CAS  Google Scholar 

  • Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, Ohnishi M, Murata T, Mori H, Hayashi T (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38:213–231

    Article  PubMed  CAS  Google Scholar 

  • Piuri M, Hatfull GF (2006) A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol 62:1569–1585

    Article  PubMed  CAS  Google Scholar 

  • Poglazov BF, Efimov AV, Marco S, Carrascosa J, Kuznetsova TA, Aijrich LG, Kurochkina LP, Mesyanzhinov VV (1999) Polymerization of bacteriophage T4 tail sheath protein mutants truncated at the C-termini. J Struct Biol 127:224–230

    Article  PubMed  CAS  Google Scholar 

  • Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103:1528–1533

    Article  PubMed  CAS  Google Scholar 

  • Raskin DM, Seshadri R, Pukatzki SU, Mekalanos JJ (2006) Bacterial genomics and pathogen evolution. Cell 124:703–714

    Article  PubMed  CAS  Google Scholar 

  • Records AR (2011) The type VI secretion system: a multi-purpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 24(7):751–757

    Article  PubMed  CAS  Google Scholar 

  • Riede I, Degen M, Henning U (1985) The receptor specificity of bacteriophages can be determined by a tail fiber modifying protein. EMBO J 4:2343–2346

    PubMed  CAS  Google Scholar 

  • Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG (2004) The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol 14:171–180

    Article  PubMed  CAS  Google Scholar 

  • Scholl D, Cooley M, Williams SR, Gebhart D, Martin D, Bates A, Mandrell R (2009) An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157:H7. Antimicrob Agents Chemother 53:3074–3080

    Article  PubMed  CAS  Google Scholar 

  • Sciara G, Bebeacua C, Bron P, Tremblay D, Ortiz-Lombardia M, Lichiere J, van Heel M, Campanacci V, Moineau S, Cambillau C (2010) Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proc Natl Acad Sci USA 107:6852–6857

    Article  PubMed  CAS  Google Scholar 

  • Serwer P, Hayes SJ, Thomas JA, Hardies SC (2007) Propagating the missing bacteriophages: a large bacteriophage in a new class. Virol J 4:21

    Article  PubMed  Google Scholar 

  • Simon LD, Anderson TF (1967a) The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. Virology 32:279–297

    Article  PubMed  CAS  Google Scholar 

  • Simon LD, Anderson TF (1967b) The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. II. Structure and function of the baseplate. Virology 32:298–305

    Article  PubMed  CAS  Google Scholar 

  • Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  • Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed  Google Scholar 

  • Steven AC, Trus BL, Maizel JV, Unser M, Parry DA, Wall JS, Hainfeld JF, Studier FW (1988) Molecular substructure of a viral receptor-recognition protein. The gp17 tail-fiber of bacteriophage T7. J Mol Biol 200:351–365

    Article  PubMed  CAS  Google Scholar 

  • Tetart F, Desplats C, Krisch HM (1998) Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity. J Mol Biol 282:543–556

    Article  PubMed  CAS  Google Scholar 

  • Tetart F, Repoila F, Monod C, Krisch HM (1996) Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J Mol Biol 258:726–731

    Article  PubMed  CAS  Google Scholar 

  • Thomassen E, Gielen G, Schutz M, Schoehn G, Abrahams JP, Miller S, van Raaij MJ (2003) The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold. J Mol Biol 331:361–373

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Arisaka F, van Driel R, Engel J (1979) Purification, characterization and reassembly of the bacteriophage T4D tail sheath protein P18. J Mol Biol 128:247–258

    Article  PubMed  CAS  Google Scholar 

  • van Raaij MJ, Schoehn G, Burda MR, Miller S (2001) Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. J Mol Biol 314:1137–1146

    Article  PubMed  Google Scholar 

  • Walter M, Fiedler C, Grassl R, Biebl M, Rachel R, Hermo-Parrado XL, Llamas-Saiz AL, Seckler R, Miller S, van Raaij MJ (2008) Structure of the receptor-binding protein of bacteriophage det7: a podoviral tail spike in a myovirus. J Virol 82:2265–2273

    Article  PubMed  CAS  Google Scholar 

  • Williams SR, Gebhart D, Martin DW, Scholl D (2008) Retargeting R-type pyocins to generate novel bactericidal protein complexes. Appl Environ Microbiol 74:3868–3876

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T (1967) Presence of Rhapidosomes in various species of bacteria and their morphological characteristics. J Bacteriol 94:1746–1756

    PubMed  CAS  Google Scholar 

  • Yang G, Dowling AJ, Gerike U, ffrench-Constant RH, Waterfield NR (2006) Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J Bacteriol 188:2254–2261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thank you to Prof. Michael Rossmann and Prof. Venigalla Rao, the editors of this book, for choosing the perfect timing in organizing this volume. This book was a unique opportunity for many scientists to summarize and publish the information, which was understood by many in the field because it was presented at conferences, but has never been published. We are very grateful to Prof. Rao for his great efforts in persuading the contributors to produce interesting chapters and, at the same time, keeping the entire project to a reasonable deadline.

Discussions with Prof. Alan Davidson, Prof. Ian Molineux, and Dr. Anastasia Aksyuk were extremely useful in preparation of this manuscript. We are very grateful to Prof. Liang Tong for sharing the coordinates of one of the sheath proteins prior to the publication of the paper describing the crystal structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr G. Leiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leiman, P.G., Shneider, M.M. (2012). Contractile Tail Machines of Bacteriophages. In: Rossmann, M., Rao, V. (eds) Viral Molecular Machines. Advances in Experimental Medicine and Biology, vol 726. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0980-9_5

Download citation

Publish with us

Policies and ethics