Skip to main content

Helical Viruses

  • Chapter
  • First Online:
Viral Molecular Machines

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 726))

Abstract

Virtually all studies of structure and assembly of viral filaments have been made on plant and bacterial viruses. Structures have been determined using fiber diffraction methods at high enough resolution to construct reliable molecular models or several of the rigid plant tobamoviruses (related to tobacco mosaic virus, TMV) and the filamentous bacteriophages including Pf1 and fd. Lower-resolution structures have been determined for a number of flexible filamentous plant viruses using fiber diffraction and cryo-electron microscopy. Virions of filamentous viruses have numerous mechanical functions, including cell entry, viral disassembly, viral assembly, and cell exit. The plant viruses, which infect multicellular organisms, also use virions or virion-like assemblies for transport within the host. Plant viruses are generally self-assembling; filamentous bacteriophage assembly is combined with secretion from the host cell, using a complex molecular machine. Tobamoviruses and other plant viruses disassemble concomitantly with translation, by various mechanisms and involving various viral and host assemblies. Plant virus movement within the host also makes use of a variety of viral proteins and modified host assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MJ, Antoniw JF, Kreuze J (2009) Virgaviridae: a new family of rod-shaped plant viruses. Arch Virol 154:1967–1972

    PubMed  CAS  Google Scholar 

  • Agranovsky AA, Lesemann DE, Maiss E, Hull R (1995) “Rattlesnake” structure of a filamentous plant RNA virus built of two capsid proteins. Proc Natl Acad Sci USA 92:2470–2473

    PubMed  CAS  Google Scholar 

  • Altschuh D, Lesk AM, Bloomer AC, Klug A (1987) Correlation of coordinated amino acid substitutions with function in viruses related to tobacco mosaic virus. J Mol Biol 193:693–707

    PubMed  CAS  Google Scholar 

  • Alzhanova DV, Napuli AJ, Creamer R, Dolja VV (2001) Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J 20:6997–7007

    PubMed  CAS  Google Scholar 

  • Alzhanova DV, Prokhnevsky AI, Peremyslov VV, Dolja VV (2007) Virion tails of Beet yellows virus: coordinated assembly by three structural proteins. Virology 359:220–226

    PubMed  CAS  Google Scholar 

  • Atabekov JG, Novikov VK, Kiselev NA, Kaftanova AS, Egorov AM (1968) Stable intermediate aggregates formed by the polymerization of barley stripe mosaic virus protein. Virology 36:620–638

    PubMed  CAS  Google Scholar 

  • Atabekov JG, Rodionova NP, Karpova OV, Kozlovsky SV, Poljakov VY (2000) The movement protein-triggered in situ conversion of Potato virus X virion RNA from a nontranslatable into a translatable form. Virology 71:259–263

    Google Scholar 

  • Atabekov JG, Rodionova NP, Karpova OV, Kozlovsky SV, Novikov VK, Arkhipenko MV (2001) Translational activation of encapsidated potato virus X RNA by coat protein phosphorylation. Virology 286:466–474

    PubMed  CAS  Google Scholar 

  • Baratova LA, Grebenshchikov NI, Dobrov EN, Gedrovich AV, Kashirin IA, Shishkov AV, Efimov AV, Järvekülg L, Radavsky YL, Saarma M (1992) The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building. Virology 188:175–180

    PubMed  CAS  Google Scholar 

  • Baratova L, Efimov AV, Dobrov EN, Fedorova NV, Hunt R, Badun GA, Ksenofontov AL, Torrance L, Järvekülg L (2001) In situ spatial organization of Potato virus A coat protein subunits as assessed by tritium bombardment. J Virol 75:9696–9702

    PubMed  CAS  Google Scholar 

  • Baratova LA, Fedorova NV, Dobrov EN, Lukashina EV, Kharlanov AN, Nasonov VV, Serebryakova MV, Kozlovsky SV, Zayakina OV, Rodionova NP (2004) N-terminal segment of potato virus X coat protein subunits is glycosylated and mediates formation of a bound water shell on the virion surface. Eur J Biochem 271:3136–3145

    PubMed  CAS  Google Scholar 

  • Bawden FC, Pirie NW, Bernal JD, Fankuchen I (1936) Liquid crystalline substances from virus-infected plants. Nature 138:1051–1052

    Google Scholar 

  • Beijerinck MW (1898) Ueber ein contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblätter. Verh Kon Akad Wetensch 5:3–21

    Google Scholar 

  • Bernal JD, Fankuchen I (1941) X-ray and crystallographic studies of plant virus preparations. J Gen Physiol 28:111–165

    Google Scholar 

  • Bhyravbhatla B, Watowich S, Caspar DLD (1998) Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-Å resolution. Biophys J 74:604–615

    PubMed  CAS  Google Scholar 

  • Blanch EW, Robinson DJ, Hecht L, Syme CD, Nielsen K, Barron LD (2002) Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity. J Gen Virol 83:241–246

    PubMed  CAS  Google Scholar 

  • Bloomer AC, Champness JN, Bricogne G, Staden R, Klug A (1978) Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits. Nature 276:362–368

    PubMed  CAS  Google Scholar 

  • Bragard C, Duncan GH, Wesley SV, Naidu RA, Mayo MA (2000) Virus-like particles assemble in plants and bacteria expressing the coat protein gene of Indian peanut clump virus. J Gen Virol 81:267–272

    PubMed  CAS  Google Scholar 

  • Brierley KM, Goodman BA, Mayo MA (1993) A mobile element on a virus particle surface identified by nuclear magnetic resonance spectroscopy. Biochem J 293:657–659

    PubMed  CAS  Google Scholar 

  • Bryan RK, Bansai M, Folkhard W, Nave C, Marvin DA (1983) Maximum-entropy calculation of the electron density at 4 Å resolution of Pf1 filamentous bacteriophage. Proc Natl Acad Sci USA 80:4728–4731

    PubMed  CAS  Google Scholar 

  • Butler PJG, Durham ACH (1972) Structures and roles of the polymorphic forms of tobacco mosaic virus. V. Conservation of the abnormally titrating groups in tobacco mosaic virus. J Mol Biol 72:19–24

    PubMed  CAS  Google Scholar 

  • Butler PJG, Durham ACH (1977) Tobacco mosaic virus protein aggregation and the virus assembly. Adv Protein Chem 31:187–251

    PubMed  Google Scholar 

  • Butler PJG, Klug A (1971) Assembly of the particle of tobacco mosaic virus from RNA and disks of protein. Nat New Biol 229:47–50

    PubMed  CAS  Google Scholar 

  • Butler PJG, Finch JT, Zimmern D (1977) Configuration of tobacco mosaic virus RNA during virus disassembly. Nature 265:217–219

    PubMed  CAS  Google Scholar 

  • Cañizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270

    PubMed  Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    PubMed  CAS  Google Scholar 

  • Carstens EB (2010) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol 155:133–146

    PubMed  CAS  Google Scholar 

  • Caspar DLD (1956) The radial density distribution in the tobacco mosaic virus particle. Nature 177:928

    CAS  Google Scholar 

  • Caspar DLD (1963) Assembly and stability of the tobacco mosaic virus particle. Adv Protein Chem 18:37–121

    PubMed  CAS  Google Scholar 

  • Caspar DLD, Holmes KC (1969) Structure of Dahlemense strain of tobacco mosaic virus: a periodically deformed helix. J Mol Biol 46:99–133

    PubMed  CAS  Google Scholar 

  • Cerovská N, Moravec T, Velemínsky J (2002) Polyclonal antibodies to a recombinant coat protein of Potato virus A. Acta Virol 46:147–151

    PubMed  Google Scholar 

  • Chandrasekaran R, Stubbs G (2006) Fibre diffraction. In: Rossmann MG, Arnold E (eds) International tables for crystallography, vol. F: Crystallography of biological macromolecules. Kluwer, The Netherlands. doi:10.1107/97809553602060000702

    Google Scholar 

  • Chen J, Torrance L, Cowan GH, MacFarlane SA, Stubbs G, Wilson TMA (1997) Detection of a single amino acid difference between the coat proteins of soil-borne wheat mosaic virus isolates by monoclonal antibodies: implications for virus structure. Phytopathology 87:295–301

    PubMed  CAS  Google Scholar 

  • Cochran W, Crick FHC, Vand V (1952) The structure of synthetic polypeptides. I. The transform of atoms on a helix. Acta Crystallogr 5:581–586

    CAS  Google Scholar 

  • Correia JJ, Shire S, Yphantis DA, Schuster TM (1985) Sedimentation equilibrium measurements of the intermediate-size tobacco mosaic virus protein polymers. Biochemistry 24:3292–3329

    PubMed  CAS  Google Scholar 

  • Cross TA, Opella SJ, Stubbs G, Caspar DLD (1983) 31P NMR of the RNA in TMV. J Mol Biol 170:1037–1043

    PubMed  CAS  Google Scholar 

  • Culver JN, Dawson WO, Plonk K, Stubbs G (1995) Site-specific mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology 206:724–730

    PubMed  CAS  Google Scholar 

  • Denis J, Acosta-Ramirez E, Zhao Y, Hameliní M-E, Koukavica I, Baz M, Abed Y, Savard C, Pare C, Macias CL, Boivin G, Leclerc D (2008) Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine 26:3395–3403

    PubMed  CAS  Google Scholar 

  • Dobrov EN, Efimov AV, Baratova LA (2004) Investigation of helical plant virus ribonucleoprotein structures with the help of tritium planigraphy and theoretical modeling. Mol Biol (Mosk) 41:706–710

    Google Scholar 

  • Dolja VV, Boyko VP, Agranovsky AA, Koonin EV (1991) Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology 184:79–86

    PubMed  CAS  Google Scholar 

  • Dolja VV, Kreuze JF, Valkonen JPT (2006) Comparative and functional genomics of closteroviruses. Virus Res 117:38–51

    PubMed  CAS  Google Scholar 

  • Dubs MC, van Regenmortel MH (1990) Odontoglossum ringspot virus coat protein: sequence and antigenic comparisons with other tobamoviruses. Arch Virol 115:239–249

    PubMed  CAS  Google Scholar 

  • Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3:413–417

    CAS  Google Scholar 

  • Egelman EH (2007) The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J Struct Biol 157:83–94

    PubMed  CAS  Google Scholar 

  • Epel BL (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host β-1,3-glucanases. Semin Cell Dev Biol 20:1074–1081

    PubMed  CAS  Google Scholar 

  • Erickson JW, Hallett FR, Bancroft JB (1983) Subassembly aggregates of papaya mosaic virus protein. Virology 129:207–211

    PubMed  CAS  Google Scholar 

  • Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) (2005) Virus taxonomy: VIIIth report of the International Committee on Taxonomy of Viruses. Elsevier/Academic, London

    Google Scholar 

  • Finch JT (1965) Preliminary X-ray diffraction studies on tobacco rattle and barley stripe mosaic viruses. J Mol Biol 12:612–619

    CAS  Google Scholar 

  • Fischetti R, Stepanov S, Rosenbaum G, Barrea R, Black E, Gore D, Heurich R, Kondrashkina E, Kropf AJ, Wang S, Zhang K, Irving TC, Bunker GB (2004) The BioCAT undulator beamline 18ID: a facility for biological non-crystalline diffraction and X-ray absorption spectroscopy at the Advanced Photon Source. J Synchrotron Rad 11:399–405

    CAS  Google Scholar 

  • Fraenkel-Conrat H, Williams R (1955) Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc Natl Acad Sci USA 41:690–698

    PubMed  CAS  Google Scholar 

  • Franklin RE (1955) Structure of tobacco mosaic virus. Nature 175:379–381

    PubMed  CAS  Google Scholar 

  • Franklin RE (1956a) Location of the ribonucleic acid in the tobacco mosaic virus particle. Nature 177:928–930

    CAS  Google Scholar 

  • Franklin RE (1956b) X-ray diffraction studies of cucumber virus 4 and three strains of tobacco mosaic virus. Biochim Biophys Acta 19:203–211

    PubMed  CAS  Google Scholar 

  • Franklin RE, Holmes KC (1958) Tobacco mosaic virus: application of the method of isomorphous replacement to the determination of the helical parameters and radial density distribution. Acta Crystallogr 11:213–220

    CAS  Google Scholar 

  • Fukuda M, Okada Y, Otsuki Y, Takebe I (1980) The site of initiation of rod assembly on the RNA of a tomato and a cowpea strain of tobacco mosaic virus. Virology 101:493–502

    PubMed  CAS  Google Scholar 

  • Goelet P, Lomonossoff GP, Butler PJG, Akam ME, Gait MJ, Karn J (1982) Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA 79:5818–5822

    PubMed  CAS  Google Scholar 

  • Goulden MG, Davies JW, Wood KR, Lomonossoff GP (1992) Structure of tobraviral particles: a model suggested from sequence conservation in tobraviral and tobamoviral coat proteins. J Mol Biol 227:1–8

    PubMed  CAS  Google Scholar 

  • Gowda S, Satyanarayana T, Ayllón MA, Moreno P, Flores R, Dawson WO (2003) The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 317:50–64

    PubMed  CAS  Google Scholar 

  • Gregory J, Holmes KC (1965) Methods of preparing orientated tobacco mosaic virus sols for x-ray diffraction. J Mol Biol 13:796–801

    CAS  Google Scholar 

  • Hamilton WDO, Boccara M, Robinson DJ, Baulcombe DC (1987) The complete nucleotide sequence of tobacco rattle virus RNA-1. J Gen Virol 68:2563–2575

    PubMed  CAS  Google Scholar 

  • Hammond JM, Sproat KW, Wise TG, Hyatt AD, Jagadish MN, Coupar BE (1998) Expression of the potyvirus coat protein mediated by recombinant vaccinia virus and assembly of potyvirus-like particles in mammalian cells. Arch Virol 143:1433–1439

    PubMed  CAS  Google Scholar 

  • Hari V (1981) The RNA of tobacco etch virus: further characterization and detection of protein linked to RNA. Virology 112:391–399

    PubMed  CAS  Google Scholar 

  • Harrison BD, Wilson TMA (1999) Milestones in research on tobacco mosaic virus. Phil Trans R Soc Lond B 354:521–529

    CAS  Google Scholar 

  • Heinlein M, Epel BL (2004) Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235:93–164

    PubMed  CAS  Google Scholar 

  • Hema M, Subba Reddy ChV, Savithri HS, Sreenivasulu P (2008) Assembly of recombinant coat protein of sugarcane streak mosaic virus into potyvirus-like particles. Indian J Exp Biol 46:793–796

    PubMed  CAS  Google Scholar 

  • Hemminga MA, Vos WL, Nazarov PV, Koehorst RBM, Wolfs CJAM, Spruijt RB, Stopar D (2010) Viruses: incredible nanomachines. New advances with filamentous phages. Eur Biophys J 39:541–550

    PubMed  Google Scholar 

  • Holmes KC, Franklin RE (1958) The radial density distribution in some strains of tobacco mosaic virus. Virology 6:328–336

    PubMed  CAS  Google Scholar 

  • Holmes KC, Stubbs GJ, Mandelkow E, Gallwitz U (1975) Structure of tobacco mosaic virus at 6.7 Å resolution. Nature 254:192–196

    PubMed  CAS  Google Scholar 

  • Homer RB, Goodman RM (1975) Circular dichroism and fluorescence studies on potato virus X and its structural components. Biochim Biophys Acta 378:296–304

    PubMed  CAS  Google Scholar 

  • Hunter GJ, Rowitch DH, Perham RN (1987) Interactions between DNA and coat protein in the structure and assembly of filamentous bacteriophage fd. Nature 327:252–254

    PubMed  CAS  Google Scholar 

  • Jackson A, Lim H-L, Bragg J, Ganesan U, Lee MY (2009) Hordeivirus replication, movement, and pathogenesis. Annu Rev Phytopathol 47:385–422

    PubMed  CAS  Google Scholar 

  • Jacob T, Usha R (2002) Expression of Cardamom mosaic virus coat protein in Escherichia coli and its assembly into filamentous aggregates. Virus Res 86:133–141

    PubMed  CAS  Google Scholar 

  • Jagadish MN, Ward CW, Gough KH, Tulloch PA, Whittaker LA, Shukla DD (1991) Expression of potyvirus coat protein in Escherichia coli and yeast and its assembly into virus-like particles. J Gen Virol 72:1543–1550

    PubMed  CAS  Google Scholar 

  • Joseph J, Savithri HS (1999) Determination of 3′-terminal nucleotide sequence of pepper vein banding virus RNA and expression of its coat protein in Escherichia coli. Arch Virol 144:1679–1687

    PubMed  CAS  Google Scholar 

  • Karpova OV, Zayakina OV, Arkhipenko MV, Sheval EV, Kiselyova OI, Poljakov VY, Yaminsky IV, Rodionova NP, Atabekov JG (2006) Potato virus X RNA-mediated assembly of single-tailed ternary ‘coat protein-RNA-­movement protein’ complexes. J Gen Virol 87:2731–2740

    PubMed  CAS  Google Scholar 

  • Kendall A, Stubbs G (2006) Oriented sols for fiber diffraction from limited quantities or hazardous materials. J Appl Crystallogr 39:39–41

    CAS  Google Scholar 

  • Kendall A, Bian W, Junn J, McCullough I, Gore D, Stubbs G (2007a) Radial density distribution and symmetry of a Potexvirus, narcissus mosaic virus. Virology 357:158–164

    PubMed  CAS  Google Scholar 

  • Kendall A, McDonald M, Stubbs G (2007b) Precise determination of the helical repeat of tobacco mosaic virus. Virology 369:226–227

    PubMed  CAS  Google Scholar 

  • Kendall A, McDonald M, Bian W, Bowles T, Baumgarten SC, Shi J, Stewart PL, Bullitt E, Gore D, Irving TC, Havens WM, Ghabrial SA, Wall JS, Stubbs G (2008) Structure of flexible filamentous plant viruses. J Virol 82:9546–9554

    PubMed  CAS  Google Scholar 

  • Kiselyova OI, Yaminsky IV, Karpova OV, Rodionova NP, Kozlovsky SV, Arkhipenko MV, Atabekov JG (2003) AFM study of potato virus X disassembly induced by movement protein. J Mol Biol 332:321–325

    PubMed  CAS  Google Scholar 

  • Klug A (1999) The tobacco mosaic virus particle: structure and assembly. Phil Trans R Soc Lond B 354:531–535

    CAS  Google Scholar 

  • Kwon S-J, Park M-R, Kim K-W, Plante CA, Hemenway CL, Kim K-H (2005) cis-Acting sequences required for coat protein binding and in vitro assembly of Potato virus X. Virology 334:83–97

    PubMed  CAS  Google Scholar 

  • Lebeurier G, Nicolaieff A, Richards KE (1977) Inside-out model for self-assembly of tobacco mosaic virus. Proc Natl Acad Sci USA 74:149–153

    PubMed  CAS  Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    PubMed  CAS  Google Scholar 

  • Lim H-S, Bragg JN, Ganesan U, Lawrence DM, Yu J, Isogai M, Hammond J, Jackson AO (2008) Triple gene block protein interactions involved in movement of Barley stripe mosaic virus. J Virol 82:4991–5006

    PubMed  CAS  Google Scholar 

  • Lobert S, Stubbs G (1990) Fiber diffraction analysis of cucumber green mottle mosaic virus using limited numbers of heavy-atom derivatives. Acta Crystallogr A46:993–997

    CAS  Google Scholar 

  • Lobert S, Heil P, Namba K, Stubbs G (1987) Preliminary x-ray fiber diffraction studies of cucumber green mottle mosaic virus, watermelon strain. J Mol Biol 196:935–938

    PubMed  CAS  Google Scholar 

  • López-Moya JJ, García JA (2008) Potyviruses. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology, 3rd edn. Elsevier/Academic, London

    Google Scholar 

  • López-Moya JJ, Valli A, García JA (2009) Potyviridae. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0000755.pub2

    Google Scholar 

  • Lu B, Stubbs G, Culver JN (1996) Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology 225:11–20

    PubMed  CAS  Google Scholar 

  • Lu B, Stubbs G, Culver JN (1998) Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection. Virology 248:188–198

    PubMed  CAS  Google Scholar 

  • Lukashina E, Badun G, Fedorova N, Ksenofontov A, Nemykh M, Serebyakova M, Mukhamedzhanova A, Karpova O, Rodionova N, Baratova L, Dobrov E (2009) Tritium planigraphy study of structural alterations in the coat protein of Potato virus X induced by binding of its triple gene block 1 protein to virions. FEBS J 276:7006–7015

    PubMed  CAS  Google Scholar 

  • Macfarlane S (1999) Molecular biology of the tobraviruses. J Gen Virol 80:2799–2807

    PubMed  CAS  Google Scholar 

  • Macfarlane S (2010) Tobraviruses - plant pathogens and tools for biotechnology. Mol Plant Pathol. doi:10.1111/j.1364-3703.2010.00617.x

  • Makowski L (1982) The use of continuous diffraction data as a phase constraint II. Application to fiber diffraction data. J Appl Crystallogr 15:546–557

    CAS  Google Scholar 

  • Makowski L (1984) Structural diversity in filamentous bacteriophages. In: Jurnak FA, McPherson A (eds) Biological macromolecules and assemblies, vol 1. Wiley, New York

    Google Scholar 

  • Makowski L, Caspar DLD, Marvin DA (1980) Filamentous bacteriophage Pf1 structure determined at 7 Å resolution by refinement of models for the α-helical subunit. J Mol Biol 140:149–181

    PubMed  CAS  Google Scholar 

  • Mandelkow E, Stubbs G, Warren S (1981) Structures of the helical aggregates of tobacco mosaic virus protein. J Mol Biol 152:375–386

    PubMed  CAS  Google Scholar 

  • Marvin DA (1966) X-ray diffraction and electron microscope studies on the structure of the small filamentous bacteriophage fd. J Mol Biol 15:8–17

    PubMed  CAS  Google Scholar 

  • Marvin DA (1990) Model-building studies of Inovirus: genetic variations on a geometric theme. Int J Biol Macromol 12:125–138

    PubMed  CAS  Google Scholar 

  • Marvin DA (1998) Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8:150–158

    PubMed  CAS  Google Scholar 

  • Marvin DA, Wiseman RL, Wachtel EJ (1974a) Filamentous bacterial viruses XI. Molecular architecture of the Class II (Pf1, Xf) virion. J Mol Biol 82:121–138

    PubMed  CAS  Google Scholar 

  • Marvin DA, Pigram WJ, Wiseman RL, Wachtel EJ, Marvin FJ (1974b) Filamentous bacterial viruses XII. Molecular architecture of the Class I (fd, If1, IKe) virion. J Mol Biol 88:581–600

    PubMed  CAS  Google Scholar 

  • Marvin DA, Hale RD, Nave C, Helmer-Citterich M (1994) Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, fl, M13), If1 and IKe. J Mol Biol 235:260–286

    PubMed  CAS  Google Scholar 

  • Marvin DA, Welsh LC, Symmons MF, Scott WRP, Straus SK (2006) Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J Mol Biol 355:294–309

    PubMed  CAS  Google Scholar 

  • Mayo MA, Brierley KM, Goodman BA (1993) Developments in the understanding of the particle structure of tobraviruses. Biochimie 75:639–644

    PubMed  CAS  Google Scholar 

  • McDonald JG, Bancroft JB (1977) Assembly studies on Potato virus Y and its coat protein. J Gen Virol 35:251–263

    Google Scholar 

  • McDonald JG, Beveridge TJ, Bancroft JB (1976) Self-assembly of a protein from a flexuous virus. Virology 69:327–331

    PubMed  CAS  Google Scholar 

  • McDonald M, Kendall A, Tanaka M, Weissman JS, Stubbs G (2008) Enclosed chambers for humidity control and sample containment in fiber diffraction. J Appl Crystallogr 41:206–209

    CAS  Google Scholar 

  • McDonald M, Kendall A, Bian W, McCullough I, Lio E, Havens WW, Ghabrial SA, Stubbs G (2010) Architecture of the potyviruses. Virology 30:309–313

    Google Scholar 

  • Millane RP (1989) R factors in x-ray fiber diffraction. II. Largest likely R factors for N overlapping terms. Acta Crystallogr A45:573–576

    CAS  Google Scholar 

  • Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

    PubMed  CAS  Google Scholar 

  • Morozov SY, Solovyev AG (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366

    PubMed  CAS  Google Scholar 

  • Namba K, Stubbs G (1986) Structure of tobacco mosaic virus at 3.6 Å resolution: implications for assembly. Science 231:1401–1406

    PubMed  CAS  Google Scholar 

  • Namba K, Caspar DLD, Stubbs G (1988) Enhancement and simplification of macromolecular images. Biophys J 53:469–475

    PubMed  CAS  Google Scholar 

  • Namba K, Pattanayek R, Stubbs G (1989) Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 Å resolution by x-ray fiber diffraction. J Mol Biol 208:307–325

    PubMed  CAS  Google Scholar 

  • Nambudripad R, Stark W, Opella SJ, Makowski L (1991) Membrane-mediated assembly of filamentous bacteriophage Pf1 coat protein. Science 252:1305–1308

    PubMed  CAS  Google Scholar 

  • Nave C, Fowler AG, Malsey S, Marvin DA, Siegrist H, Wachtel EJ (1979) Macromolecular structural transitions in Pf1 filamentous bacterial virus. Nature 281:232–234

    PubMed  CAS  Google Scholar 

  • Nemykh MA, Efimov AV, Novikov VK, Orlov VN, Arutyunyan AM, Drachev VA, Lukashina EV, Baratova LA, Dobrov EN (2008) One more probable structural transition in potato virus X virions and a revised model of the virus coat protein structure. Virology 373:61–71

    PubMed  CAS  Google Scholar 

  • Okada Y (1986) Molecular assembly of tobacco mosaic virus in vitro. Adv Biophys 22:95–149

    PubMed  CAS  Google Scholar 

  • Opalka N, Beckmann R, Boisset N, Simon MN, Russel M, Darst SA (2003) Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J Mol Biol 325:461–470

    PubMed  CAS  Google Scholar 

  • Opella SJ, Zeri AC, Park SH (2008) Structure, dynamics, and assembly of filamentous bacteriophages by nuclear magnetic resonance spectroscopy. Annu Rev Phys Chem 59:635–657

    PubMed  CAS  Google Scholar 

  • Park M-R, Kwon S-J, Choi H-S, Hemenway CL, Kim K-H (2008) Mutations that alter a repeated ACCA element located at the 5′ end of the Potato virus X genome affect RNA accumulation. Virology 378:133–141

    PubMed  CAS  Google Scholar 

  • Parker L, Kendall A, Stubbs G (2002) Surface features of potato virus X from fiber diffraction. Virology 300:291–295

    PubMed  CAS  Google Scholar 

  • Parker L, Kendall A, Berger PH, Shiel PJ, Stubbs G (2005) Wheat streak mosaic virus – structural parameters for a Potyvirus. Virology 340:64–69

    PubMed  CAS  Google Scholar 

  • Pattanayek R, Stubbs G (1992) Structure of the U2 strain of tobacco mosaic virus refined at 3.5 Å resolution using x-ray fiber diffraction. J Mol Biol 228:516–528

    PubMed  CAS  Google Scholar 

  • Pattanayek R, Elrod M, Stubbs G (1992) Characterization of a putative calcium-binding site in tobacco mosaic virus. Proteins 12:128–132

    PubMed  CAS  Google Scholar 

  • Pennisi E (2010) Armed and dangerous. Science 327:802–803

    PubMed  CAS  Google Scholar 

  • Peremyslov VV, Andreev IA, Prokhnevsky AI, Duncan GH, Taliansky ME, Dolja VV (2004) Complex molecular architecture of beet yellows virus particles. Proc Natl Acad Sci USA 101:5030–5035

    PubMed  CAS  Google Scholar 

  • Petty IT, French R, Jones RW, Jackson AO (1990) Identification of barley stripe mosaic virus genes involved in RNA replication and systemic movement. EMBO J 9:3453–3457

    PubMed  CAS  Google Scholar 

  • Planchart A (1995) X-ray fiber diffraction studies of odontoglossum ringspot virus: lessons on how nature produces a virus with a different host specificity. Thesis, Vanderbilt University

    Google Scholar 

  • Puustinen P, Rajamäki M-L, Ivanov KI, Valkonen JPT, Mäkinen K (2002) Detection of the potyviral genome-linked protein VPg in virions and its phosphorylation by host kinases. J Virol 76:12703–12711

    PubMed  CAS  Google Scholar 

  • Richardson JF, Tollin P, Bancroft JB (1981) The architecture of the potexviruses. Virology 112:34–39

    PubMed  CAS  Google Scholar 

  • Rodionova NP, Karpova OV, Kozlovsky SV, Zayakina OV, Arkhipenko MV, Atabekov JG (2003) Linear remodeling of a helical virus by movement protein binding. J Mol Biol 333:565–572

    PubMed  CAS  Google Scholar 

  • Russel M, Model P (2006) Filamentous phage. In: Calendar RL (ed) The bacteriophages, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Samuel G (1934) The movement of tobacco mosaic virus within the plant. Ann Appl Biol 21:90–111

    Google Scholar 

  • Satyanarayana T, Gowda S, Ayllón MA, Dawson WO (2004) Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci USA 101:799–804

    PubMed  CAS  Google Scholar 

  • Scholthof HB (2005) Plant virus transport: motions of functional equivalence. Trends Plant Sci 10:376–382

    PubMed  CAS  Google Scholar 

  • Schramm G (1947) Uber die Spaltung des Tabakmosaikvirus und die Wiedervereinigung der Spaltstücke zu höhermolekularen Proteinen. Z Naturforsch 2b:249–257

    CAS  Google Scholar 

  • Shaw JG, Plaskitt KA, Wilson TMA (1986) Evidence that tobacco mosaic virus particles disassemble cotranslationally in vivo. Virology 148:326–336

    PubMed  CAS  Google Scholar 

  • Shukla DD, Strike PM, Tracy SL, Gough KH, Ward CW (1988) The N and C termini of the coat proteins of potyviruses are surface-located and the N terminus contains the major virus specific epitopes. J Gen Virol 69:1497–1508

    CAS  Google Scholar 

  • Sit TL, Leclerc D, AbouHaidar MG (1994) The minimal 5′ sequence for in vitro initiation of papaya mosaic assembly. Virology 199:239–242

    Google Scholar 

  • Smolsky IL, Liu P, Niebuhr M, Ito K, Weiss TM, Tsuruta H (2007) Biological small-angle X-ray scattering facility at the Stanford Synchrotron Radiation Laboratory. J Appl Cryst 40:s453–s458

    CAS  Google Scholar 

  • Stark W, Glucksman MJ, Makowski L (1988) Conformation of the coat protein of the filamentous bacteriophage Pf1 determined by neutron diffraction from magnetically oriented gels of specifically deuterated virions. J Mol Biol 199:171–182

    PubMed  CAS  Google Scholar 

  • Steckert JJ, Schuster TM (1982) Sequence specificity of trinucleoside diphosphate binding to polymerized tobacco mosaic virus protein. Nature 299:32–36

    PubMed  CAS  Google Scholar 

  • Straus SK, Scott WRP, Symmons MF, Marvin DA (2008) On the structures of filamentous bacteriophage Ff (fd, f1, M13). Eur Biophys J 37:521–527

    PubMed  CAS  Google Scholar 

  • Stubbs G (1989) The probability distributions of x-ray intensities in fiber diffraction: largest likely values for fiber diffraction R factors. Acta Crystallogr A45:254–258

    CAS  Google Scholar 

  • Stubbs G (1999a) Developments in fiber diffraction. Curr Opin Struct Biol 9:615–619

    PubMed  CAS  Google Scholar 

  • Stubbs G (1999b) Tobacco mosaic virus particle structure and the initiation of disassembly. Philos Trans R Soc B 354:551–557

    CAS  Google Scholar 

  • Stubbs G (2001) Fibre diffraction studies of filamentous viruses. Rep Prog Phys 64:1389–1425

    CAS  Google Scholar 

  • Stubbs G, Diamond R (1975) The phase problem for cylindrically averaged diffraction patterns. Solution by isomorphous replacement and application to tobacco mosaic virus. Acta Crystallogr A31:709–718

    CAS  Google Scholar 

  • Stubbs G, Makowski L (1982) Coordinated use of isomorphous replacement and layer-line splitting in the phasing of fiber diffraction data. Acta Crystallogr A38:417–425

    CAS  Google Scholar 

  • Stubbs G, Stauffacher C (1981) Structure of the RNA in tobacco mosaic virus. J Mol Biol 152:387–396

    PubMed  CAS  Google Scholar 

  • Stubbs G, Warren S, Holmes K (1977) Structure of RNA and RNA binding site in tobacco mosaic virus from a 4 Å map calculated from x-ray fibre diagrams. Nature 267:216–221

    PubMed  CAS  Google Scholar 

  • Swanson M, Barker H, Macfarlane S (2002) Rapid vascular movement of tobraviruses does not require coat protein: evidence from mutated and wild-type viruses. Ann Appl Biol 141:259–266

    CAS  Google Scholar 

  • Taliansky M, Torrance L, Kalinina NO (2008) Role of plant virus movement proteins. Methods Mol Biol 451:33–54

    PubMed  CAS  Google Scholar 

  • Tollin P, Wilson HR (1971) Some observations on the structure of the Campinas strain of tobacco rattle virus. J Gen Virol 13:433–440

    PubMed  CAS  Google Scholar 

  • Tollin P, Wilson HR (1988) Particle structure. In: Milne RG (ed) The plant viruses, vol. 4: The filamentous plant viruses. Plenum, New York

    Google Scholar 

  • Tollin P, Wilson HR, Young DW, Cathro J, Mowat WP (1967) X-ray diffraction and electron microscope studies of narcissus mosaic virus, and comparison with potato virus X. J Mol Biol 26:353–355

    PubMed  CAS  Google Scholar 

  • Tollin P, Wilson HR, Bancroft JB (1980) Further observations on the structure of particles of potato virus X. J Gen Virol 49:407–410

    CAS  Google Scholar 

  • Tollin P, Wilson HR, Roberts IM, Murant AF (1992) Diffraction studies of the particles of two closteroviruses: heracleum latent virus and heracleum virus 6. J Gen Virol 73:3045–3048

    PubMed  Google Scholar 

  • Torbet J, Maret G (1979) Fibres of highly oriented Pf1 bacteriophage produced in a strong magnetic field. J Mol Biol 134:843–845

    PubMed  CAS  Google Scholar 

  • Torrance L, Andreev IA, Gabrenaite-Verhovskaya R, Cowan G, Mäkinen K, Taliansky M (2006) An unusual structure at one end of potato potyvirus particles. J Mol Biol 357:1–8

    PubMed  CAS  Google Scholar 

  • Tremblay M-H, Majeau N, Laliberté Gagné M-E, Lecours K, Morin H, Duvignaud J-B, Bolduc M, Chouinard N, Paré C, Gagné S, Leclerc D (2006) Effect of mutations K97A and E128A on RNA binding and self assembly of papaya mosaic potexvirus coat protein. FEBS J 273:14–25

    PubMed  CAS  Google Scholar 

  • Vaira AM, Maroon-Lango CJ, Hammond J (2008) Molecular characterization of Lolium latent virus, proposed type member of a new genus in the family Flexiviridae. Arch Virol 153:1263–1270

    PubMed  CAS  Google Scholar 

  • Varma A, Gibbs AJ, Woods RD, Finch JT (1968) Some observations on the structure of the filamentous particles of several plant viruses. J Gen Virol 2:107–114

    PubMed  CAS  Google Scholar 

  • Verchot-Lubicz J, Ye C-M, Bamunusinghe D (2007) Molecular biology of potexviruses: recent advances. J Gen Virol 88:1643–1655

    PubMed  CAS  Google Scholar 

  • Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D (2010) Varied movement strategies employed by triple gene block-encoding viruses. Mol Plant Microbe Interact 23:1231–1247

    PubMed  CAS  Google Scholar 

  • Wachtel EJ, Marvin FJ, Marvin DA (1976) Structural transition in a filamentous protein. J Mol Biol 107:379–383

    PubMed  CAS  Google Scholar 

  • Wang H, Stubbs G (1993) Molecular dynamics in refinement against fiber diffraction data. Acta Cryst A49:504–513

    CAS  Google Scholar 

  • Wang H, Stubbs G (1994) The structure of cucumber green mottle mosaic virus at 3.4 Å resolution by x-ray fiber diffraction: significance for the evolution of tobamoviruses. J Mol Biol 239:371–384

    PubMed  CAS  Google Scholar 

  • Wang H, Culver JN, Stubbs G (1997) Structure of ribgrass mosaic virus at 2.9 Å resolution: evolution and taxonomy of tobamoviruses. J Mol Biol 269:769–779

    PubMed  CAS  Google Scholar 

  • Wang H, Planchart A, Stubbs G (1998) Caspar carboxylates: the structural basis of tobamovirus disassembly. Biophys J 74:633–638

    PubMed  CAS  Google Scholar 

  • Wang YA, Yu X, Overman S, Tsuboi M, Thomas GJ Jr, Egelman EH (2006) The structure of a filamentous bacteriophage. J Mol Biol 361:209–215

    PubMed  CAS  Google Scholar 

  • Watson JD (1954) The structure of tobacco mosaic virus: I. X-ray evidence of a helical arrangement of subunits around the longitudinal axis. Biochim Biophys Acta 13:10–19

    PubMed  CAS  Google Scholar 

  • Welsh LC, Symmons MF, Sturtevant JM, Marvin DA, Perham RN (1998) Structure of the capsid of Pf3 filamentous phage determined from X-ray fibre diffraction data at 3.1 Å resolution. J Mol Biol 283:155–177

    PubMed  CAS  Google Scholar 

  • Welsh LC, Symmons MF, Marvin DA (2000) The molecular structure and structural transition of the α-helical capsid in filamentous bacteriophage Pf1. Acta Crystallogr D56:137–150

    CAS  Google Scholar 

  • Wilson TM (1984) Cotranslational disassembly of tobacco mosaic virus in vitro. Virology 137:255–265

    PubMed  CAS  Google Scholar 

  • Wilson HR, Tollin P, Sawyer L, Robinsin DJ, Price NC, Kelly SM (1991) Secondary structures of narcissus mosaic virus protein. J Gen Virol 72:1479–1480

    PubMed  CAS  Google Scholar 

  • Wu X, Shaw JG (1998) Evidence that assembly of a potyvirus begins near the 5′ terminus of the viral RNA. J Gen Virol 79:1525–1529

    PubMed  CAS  Google Scholar 

  • Wyckoff RWG, Corey RB (1936) X-ray diffraction patterns of crystalline tobacco mosaic proteins. J Biol Chem 116:51–55

    CAS  Google Scholar 

  • Yamashita I, Suzuki H, Namba K (1998) Multiple-step method for making exceptionally well-oriented liquid-­crystalline sols of macromolecular assemblies. J Mol Biol 278:609–615

    PubMed  CAS  Google Scholar 

  • Zayakina O, Arkhipenko M, Kozlovsky S, Nikitin N, Smirnov A, Susi P, Rodionova N, Karpova O, Atabekov J (2008) (2008) Mutagenic analysis of Potato Virus X movement protein (TGBp1) and the coat protein (CP): in vitro TGBp1-CP binding and viral RNA translation activation. Mol Plant Pathol 9:37–44

    PubMed  CAS  Google Scholar 

  • Zeri AC, Mesleh MF, Nevzorov AA, Opella SJ (2003) Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy. Proc Natl Acad Sci USA 100:6458–6463

    PubMed  CAS  Google Scholar 

  • Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, Grigorieff N (2008) Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA 105:1867–1872

    PubMed  CAS  Google Scholar 

  • Zhou ZH (2008) Towards atomic resolution structural determination by single-particle cryoelectron microscopy. Curr Opin Struct Biol 18:218–228

    PubMed  CAS  Google Scholar 

  • Zimmern D (1977) The nucleotide sequence at the origin for assembly on tobacco mosaic virus RNA. Cell 11:463–482

    PubMed  CAS  Google Scholar 

  • Zimmern D, Wilson TM (1976) Location of the origin for viral reassembly on tobacco mosaic virus RNA and its relation to stable fragment. FEBS Lett 71:294–298

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Don Marvin for much helpful advice and assistance with filamentous bacteriophage figures. The plant virus work from this laboratory was supported by NSF grant MCB-0743931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Stubbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stubbs, G., Kendall, A. (2012). Helical Viruses. In: Rossmann, M., Rao, V. (eds) Viral Molecular Machines. Advances in Experimental Medicine and Biology, vol 726. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0980-9_28

Download citation

Publish with us

Policies and ethics