Thyroid Elastography

  • Kunwar S. S. Bhatia
  • Darshana Dattatray Rasalkar
  • Anil T. Ahuja


Although thyroid nodules are very common, most of them are benign [1]. The aim of any imaging modality is to accurately identify the small number of nodules that are malignant so that prompt treatment can be instituted. Conventional ultrasound is very sensitive for nodule detection but may not always be able to characterize its nature.


Thyroid Nodule Malignant Nodule Acoustic Radiation Force Impulse Shear Wave Elastography Shear Wave Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yassa L, Cibas ES, Benson CB, et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer. 2007;111:508–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Cappelli C, Castellano M, Pirola I, et al. The predictive value of ultrasound findings in the management of thyroid nodules. QJM. 2007;100:29–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Frates MC, Benson CB, Charboneau JW, et al. Management of thyroid nodules detected at US: Society of Radiologists in ultrasound consensus conference statement. Radiology. 2005;237:794–800.PubMedCrossRefGoogle Scholar
  4. 4.
    Rago T, Vitti P, Chiovato L, et al. Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in ‘cold’ thyroid nodules. Eur J Endocrinol. 1998;138:41–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Cerbone G, Spiezia S, Colao A, et al. Power Doppler improves the diagnostic accuracy of color Doppler ultrasonography in cold thyroid nodules: follow-up results. Horm Res. 1999;52:19–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim EK, Park CS, Chung WY, et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. Am J Roentgenol. 2002;178:687–91.Google Scholar
  7. 7.
    Kim JY, Lee CH, Kim SY, et al. Radiologic and pathologic findings of nonpalpable thyroid carcinomas detected by ultrasonography in a medical screening center. J Ultrasound Med. 2008;27:215–23.PubMedGoogle Scholar
  8. 8.
    Moon WJ, Jung SL, Lee JH, et al. Benign and malignant thyroid nodules: US differentiation–multicenter retrospective study. Radiology. 2008;247:762–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Chow LS, Gharib H, Goellner JR, van Heerden JA. Nondiagnostic thyroid fine-needle aspiration cytology: management dilemmas. Thyroid. 2001;11:1147–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Gharib H, Goellner JR. Fine-needle aspiration biopsy of the thyroid: an appraisal. Ann Intern Med. 1993;118:282–9.PubMedGoogle Scholar
  11. 11.
    Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Lyshchik A, Higashi T, Asato R, et al. Thyroid gland tumor diagnosis at US elastography. Radiology. 2005;237:202–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92:2917–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Asteria C, Giovanardi A, Pizzocaro A, et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008;18:523–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Dighe M, Bae U, Richardson ML, Dubinsky TJ, Minoshima S, Kim Y. Differential diagnosis of thyroid nodules with US elastography using carotid artery pulsation. Radiology. 2008;248:662–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Tranquart F, Bleuzen A, Pierre-Renoult P, Chabrolle C, Sam Giao M, Lecomte P. [Elastosonography of thyroid lesions]. J Radiol. 2008;89:35–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Friedrich-Rust M, Sperber A, Holzer K, et al. Real-time elastography and contrast-enhanced ultrasound for the assessment of thyroid nodules. Exp Clin Endocrinol Diabetes. 2009;118(9):602–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Hong Y, Liu X, Li Z, Zhang X, Chen M, Luo Z. Real-time ultrasound elastography in the differential diagnosis of benign and malignant thyroid nodules. J Ultrasound Med. 2009;28:861–7.PubMedGoogle Scholar
  19. 19.
    Luo S, Kim EH, Dighe M, Kim Y. Screening of thyroid nodules by ultrasound elastography using diastolic strain variation. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4420–3.PubMedGoogle Scholar
  20. 20.
    Rubaltelli L, Corradin S, Dorigo A, et al. Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall Med. 2009;30:175–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Dighe M, Kim J, Luo S, Kim Y. Utility of the ultrasound elastographic systolic thyroid stiffness index in reducing fine-needle aspirations. J Ultrasound Med. 2010;29:565–74.PubMedGoogle Scholar
  22. 22.
    Gietka-Czernel M, Kochman M, Bujalska K, Stachlewska-Nasfeter E, Zgliczynski W. Real-time ultrasound elastography – a new tool for diagnosing thyroid nodules. Endokrynol Pol. 2010;61:652–7.PubMedGoogle Scholar
  23. 23.
    Kagoya R, Monobe H, Tojima H. Utility of elastography for differential diagnosis of benign and malignant thyroid nodules. Otolaryngol Head Neck Surg. 2010;143:230–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Luo S, Kim EH, Dighe M, Kim Y. Thyroid nodule classification using ultrasound elastography via linear discriminant analysis. Ultrasonics. 2011;51(4):425–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Rago T, Scutari M, Santini F, et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab. 2010;95(12):5274–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Sebag F, Vaillant-Lombard J, Berbis J, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95:5281–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Vorlander C, Wolff J, Saalabian S, Lienenluke RH, Wahl RA. Real-time ultrasound elastography–a noninvasive diagnostic procedure for evaluating dominant thyroid nodules. Langenbecks Arch Surg. 2010;395:865–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang Y, Dan HJ, Dan HY, Li T, Hu B. Differential diagnosis of small single solid thyroid nodules using real-time ultrasound elastography. J Int Med Res. 2010;38:466–72.PubMedGoogle Scholar
  29. 29.
    Bhatia KSS, Rasalkar DD, Yim PL, et al. Cystic change in thyroid nodules: a confounding factor for real-time qualitative thyroid ultrasound elastography. Clin Radiol. 2011;66(9):799–807.PubMedCrossRefGoogle Scholar
  30. 30.
    Fukunari N. More accurate and sensitive diagnosis for thyroid tumours with elastography. In: MEDIX Suppl2007; 2007.Google Scholar
  31. 31.
    Scacchi M, Andrioli M, Carzaniga C, et al. Elastosonographic evaluation of thyroid nodules in acromegaly. Eur J Endocrinol. 2009;161:607–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Ginat DT, Destounis SV, Barr RG, Castaneda B, Strang JG, Rubens DJ. US elastography of breast and prostate lesions. Radiographics. 2009;29:2007–16.PubMedCrossRefGoogle Scholar
  33. 33.
    Janssen J, Schlorer E, Greiner L. EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. Gastrointest Endosc. 2007;65:971–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Janssen J, Dietrich CF, Will U, Greiner L. Endosonographic elastography in the diagnosis of mediastinal lymph nodes. Endoscopy. 2007;39:952–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Alam F, Naito K, Horiguchi J, Fukuda H, Tachikake T, Ito K. Accuracy of sonographic elastography in the differential diagnosis of enlarged cervical lymph nodes: comparison with conventional B-mode sonography. Am J Roentgenol. 2008;191:604–10.CrossRefGoogle Scholar
  36. 36.
    Garra BS. Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q. 2007;23:255–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Lyshchik A, Higashi T, Asato R, et al. Cervical lymph node metastases: diagnosis at sonoelastography–initial experience. Radiology. 2007;243:258–67.PubMedCrossRefGoogle Scholar
  38. 38.
    Saftoiu A, Vilmann P, Hassan H, Gorunescu F. Analysis of endoscopic ultrasound elastography used for characterisation and differentiation of benign and malignant lymph nodes. Ultraschall Med. 2006;27:535–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhi H, Ou B, Luo BM, Feng X, Wen YL, Yang HY. Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med. 2007;26:807–15.PubMedGoogle Scholar
  40. 40.
    Thomas A, Kummel S, Gemeinhardt O, Fischer T. Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Acad Radiol. 2007;14:193–200.PubMedCrossRefGoogle Scholar
  41. 41.
    Taylor LS, Rubens DJ, Porter BC, et al. Prostate cancer: three-dimensional sonoelastography for in vitro detection. Radiology. 2005;237:981–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Thomas A, Fischer T, Frey H, et al. Real-time elastography–an advanced method of ultrasound: first results in 108 patients with breast lesions. Ultrasound Obstet Gynecol. 2006;28:335–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Bae U, Dighe M, Dubinsky T, Minoshima S, Shamdasani V, Kim Y. Ultrasound thyroid elastography using carotid artery pulsation: preliminary study. J Ultrasound Med. 2007;26:797–805.PubMedGoogle Scholar
  45. 45.
    Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of malignant ­thyroid nodules. Am J Roentgenol. 2009;193:W416–23.CrossRefGoogle Scholar
  46. 46.
    Raza S, Odulate A, Ong EM, Chikarmane S, Harston CW. Using real-time tissue elastography for breast lesion evaluation: our initial experience. J Ultrasound Med. 2010;29:551–63.PubMedGoogle Scholar
  47. 47.
    Bhatia KS, Cho CC, Yuen YH, Rasalkar DD, King AD, Ahuja AT. Real-time qualitative ultrasound elastography of cervical lymph nodes in routine clinical practice: interobserver agreement and correlation with malignancy. Ultrasound Med Biol. 2010;36:1990–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Bhatia KS, Rasalkar DD, Lee YP, et al. Evaluation of real-time qualitative sonoelastography of focal lesions in the parotid and submandibular glands: applications and limitations. Eur Radiol. 2010;20:1958–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Bojunga J, Herrmann E, Meyer G, Weber S, Zeuzem S, Friedrich-Rust M. Real-time elastography for the differentiation of benign and malignant thyroid nodules: a meta-analysis. Thyroid. 2010;20:1145–50.PubMedCrossRefGoogle Scholar
  50. 50.
    Lyshchik A, Higashi T, Asato R, et al. Elastic moduli of thyroid tissues under compression. Ultrason Imaging. 2005;27:101–10.PubMedGoogle Scholar
  51. 51.
    Ophir J, Garra B, Kallel F, et al. Elastographic imaging. Ultrasound Med Biol. 2000;26 Suppl 1:S23–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Hall TJ. AAPM/RSNA physics tutorial for residents: topics in US: beyond the basics: elasticity imaging with US. Radiographics. 2003;23:1657–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Ueno E, Ito A. Diagnosis of breast cancer by elasticity imaging. Eizo Joho Med. 2004;36:2–6.Google Scholar
  54. 54.
    Hall TJ, Zhu Y, Spalding CS. In vivo real-time freehand palpation imaging. Ultrasound Med Biol. 2003;29:427–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Regner DM, Hesley GK, Hangiandreou NJ, et al. Breast lesions: evaluation with US strain imaging–clinical experience of multiple observers. Radiology. 2006;238:425–37.PubMedCrossRefGoogle Scholar
  56. 56.
    DeLellis RA, Guiter G, Weinstein BJ. Pathology of the thyroid and parathyroid glands. In: Gnepp DR, editor. Diagnostic and surgical pathology of the head and neck. Philadelphia: W.B. Saunders; 2001.Google Scholar
  57. 57.
    Havre RF, Elde E, Gilja OH, et al. Freehand real-time elastography: impact of scanning parameters on image quality and in vitro intra- and interobserver validations. Ultrasound Med Biol. 2008;34:1638–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Ophir J, Cespedes I, Garra B, Ponnekanti H, Huang Y, Maklad N. Elastography: ultrasonic imaging of tissue strain and elastic modulus in vivo. Eur J Ultrasound. 1996;3:49–70.CrossRefGoogle Scholar
  59. 59.
    Friedrich-Rust M, Schwarz A, Ong M, et al. Real-time tissue elastography versus FibroScan for noninvasive assessment of liver fibrosis in chronic liver disease. Ultraschall Med. 2009;30:478–84.PubMedCrossRefGoogle Scholar
  60. 60.
    Frates MC, Benson CB, Charboneau JW, et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Ultrasound Q 2006;22:231–8; discussion 9–40.Google Scholar
  61. 61.
    Evans HL. Follicular neoplasms of the thyroid. A study of 44 cases followed for a minimum of 10 years, with emphasis on differential diagnosis. Cancer. 1984;54:535–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2002;28:227–35.PubMedCrossRefGoogle Scholar
  63. 63.
    Melodelima D, Bamber JC, Duck FA, Shipley JA. Transient elastography using impulsive ultrasound radiation force: a preliminary comparison with surface palpation elastography. Ultrasound Med Biol. 2007;33:959–69.PubMedCrossRefGoogle Scholar
  64. 64.
    Tanter M, Bercoff J, Athanasiou A, et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol. 2008;34:1373–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kunwar S. S. Bhatia
    • 1
  • Darshana Dattatray Rasalkar
    • 2
  • Anil T. Ahuja
    • 3
  1. 1.Department of Imaging & Interventional RadiologyPrince of Wales Hospital, The Chinese University of Hong KongShatin, NTHong Kong, People’s Republic of China
  2. 2.Department of RadiologyKokilaben Dhirubhai Ambani HospitalMumbaiIndia
  3. 3.Department of Imaging and Interventional RadiologyThe Chinese University of Hong Kong, Prince of Wales HospitalShatin (NT)Hong Kong (SAR), China

Personalised recommendations