Humidity and Temperature Sensors on Flexible Transparency Sheets

  • G. Scandurra
  • A. Arena
  • C. Ciofi
  • G. Saitta
  • G. Neri
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 109)


Flexible humidity sensors are developed by coating copper films, thermally evaporated onto copier grade transparency sheets, with ZnFe2O4 nanoparticles dispersed in PMMA, and by applying carbon nanotubes electrodes on the top. Humidity sensing at constant temperature is demonstrated by the linear and reversible change of the device’s capacitance in response to the RH changes, with average response and recovery times lower than 1 min. A simple local etching approach is used to pattern copper spiral heaters and resistances having calibrated temperature coefficient on the back and on the top of the substrate. The heaters and the calibrated resistances allow the temperature of the substrate to be set and measured, avoiding capacitance changes due to thermal drifts.


Humidity Sensor Copper Film Transparency Sheet Relative Humidity Sensor ZnFe2O4 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Penza M, Rossi R, Alvisi M, Valerini D, Serra E, Paolesse R, Martinelli E, D’Amico A, Di Natale C (2009) Metalloporphyrins-functionalized carbon nanotube networked films for room-temperature VOCs sensing applications Procedia Chem 1:975–978Google Scholar
  2. 2.
    Mattoli V, Mazzolai B, Mondini A, Zampolli S, Dario P (2009) Flexible tag data logger for food logistics. Procedia Chem 1:1215–1218Google Scholar
  3. 3.
    Zampetti E, Pantalei S, Pecora A, Valletta A, Maiolo L, Minotti A, Macagnano A, Fortunato G, Bearzotti A (2009) Design and optimization of an ultra thin flexible capacitive humidity sensor. Sensor Actuator B 143:302–307Google Scholar
  4. 4.
    Oprea A, Bârsan N, Weimar U, Bauersfeld ML, Ebling D, Wöllenstein J (2008) Capacitive humidity sensors on flexible RFID labels. Sensor Actuator B 132:404–410Google Scholar
  5. 5.
    Oikonomou P, Manoli K, Goustouridis D, Raptis I, Sanopoulou M (2009) Polymer/BaTiO3 nanocomposites based chemocapacitive sensors. Microelectr Eng 86:1286–1288Google Scholar
  6. 6.
    Oprea A, Courbat J, Bârsan N, BriandD, de Rooij NF, Weimar U (2009) Humidity and gas sensors integrated on plastic foil for low-power applications. Sensor Actuator B 140: 227–232Google Scholar
  7. 7.
    Rodríguez O, Fornasiero F, Arce A, Radke CJ, Prausnitz JM (2003) Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile). Polymer 44:6323–6333Google Scholar
  8. 8.
    Matsuguchi M, Yoshida M, Kuroiwa T, Ogura T (2004) Depression of a capacitive-type humidity sensor's drift by introducing a cross-linked structure in the sensing polymer. Sensor Actuator B 102:97–101Google Scholar
  9. 9.
    Su PG, Wang CS (2007) In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor. Sensor Actuator B 124:303–308Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • G. Scandurra
    • 1
  • A. Arena
    • 1
  • C. Ciofi
    • 1
  • G. Saitta
    • 1
  • G. Neri
    • 2
  1. 1.Dipartimento di Fisica della Materia e Ingegneria ElettronicaUniversità di MessinaMessinaItaly
  2. 2.Dipartimento di Chimica Industriale e Ingegneria dei MaterialiUniversità di MessinaMessinaItaly

Personalised recommendations