Skip to main content

Thermodynamic Foundations of Wetting and Capillary Phenomena

  • Chapter
  • First Online:
Biomimetics in Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 152))

  • 2459 Accesses

Abstract

In the third part of the book, we investigate the phenomenon of self-cleaning and nonadhesive surfaces, i.e., the ability of a surface to repel water, organic liquids, and various types of contaminants, including solid, soft, liquid, and organic, as well as microorganisms. This ability is usually a result of the interplay of surface roughness, coating, micro- and nanostructure, capillary effects, surface energy, and adhesive and chemical properties. The central theme of self-cleaning research is the reduction of adhesion between a liquid and a solid. This involves the reduction of adhesion with the contaminant itself (e.g., with an organic liquid) as well as with water, which washes away contaminants when repelled from a solid surface. Three main approaches to self-cleaning involve (1) the Lotus effect (defined as surface roughness-induced superhydrophobicity and self-cleaning), (2) deposition of a superhydrophilic titanium dioxide (titania) film, and (3) underwater oleophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, G.G., Nosonovsky, M.: Contact modeling – forces. Tribol Int 33, 441–442 (2000)

    Article  Google Scholar 

  • Adams, G.G., Muftu, S. and Mohd Azhar, N., “A scale-dependent model for multiasperity contact and friction,” ASME J. Tribol. 125 (2003) 700–708

    Google Scholar 

  • Nosonovsky at al., 2011. Please add to the reference lis “M. Nosonovsky, S.-H. Yang, and H. Zhang “On the Sensitivity of the Capillary Adhesion Force to the Surface Roughness” In :Scanning Probe Microscopy in Nanoscience and Nanotechnology (Ed. B. Bhushan, Springer series in Nanoscience and technology, 2011) Vol. 2, p. 573–588

    Google Scholar 

  • Adamson, A.V.: Physical Chemistry of Surfaces. Wiley, New York (1990)

    Google Scholar 

  • Angell, C.A.: Approaching the limits. Nature 331, 206 (1988)

    Article  Google Scholar 

  • Anisimov, M.A.: Divergence of Tolman’s length for a droplet near the critical point. Phys. Rev. Lett. 98, 035702 (2007)

    Article  Google Scholar 

  • Apfel, R., Smith, M.: The tensile strength of di-ethyl ether using Briggs’s method. J Appl. Phys. 48, 2077–2078 (1977)

    Article  Google Scholar 

  • Asay, D.B., de Boer, M.P., Kim, S.H.: Equilibrium vapor adsorption and capillary force: exact Laplace-Young equation solution and circular approximation approaches. J Adhes Sci Technol. 24, 2363–2382 (2010)

    Article  Google Scholar 

  • Asay, D.B., Kim, S.H.: Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact with humid ambient. J. Chem. Phys. 124, 174712 (2006)

    Article  Google Scholar 

  • Bhushan, B., Dandavate, C.: Thin-film friction and adhesion studies using atomic force microscopy. J. Appl. Phys. 87, 1201–1210 (2000)

    Article  Google Scholar 

  • Bhushan, B., Sundararajan, S.: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater. 46, 3793–3804 (1998)

    Article  Google Scholar 

  • Binggeli, M., Mate, C.M.: Influence of capillary condensation of water on nanotribology studied by force microscopy. Appl. Phys. Lett. 65, 415–417 (1994)

    Article  Google Scholar 

  • Boruvka, L., Neumann, A.W.: Generalization of the classical theory of capillarity. J. Chem. Phys. 66, 5464–5476 (1977)

    Article  Google Scholar 

  • Boyle, M.G., Mitra, J., Dawson, P.: The tip-sample water bridge and light emission from scanning tunnelling microscopy. Nanotechnology 20, 335202 (2009)

    Article  Google Scholar 

  • Braun, O.M., Peyrard, M.: Dynamics and melting of a thin confined film. Phys. Rev. E 68, 011506 (2003)

    Article  Google Scholar 

  • Butt, H.-J., Farshchi-Tabrizi, M., Kappl, M.: Using capillary forces to determine geometry of nanocontacts. J. Appl. Phys. 100, 024312 (2006)

    Article  Google Scholar 

  • Cappella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci Rep. 34, 1–104 (1999)

    Article  Google Scholar 

  • Carpick, R.W., Agrait, N., Ogletree, D.F., Salmeron, M.: Variation of the interfacial shear strength and adhesion of a nanometer-sized contact. Langmuir 12, 3334–3340 (1996)

    Article  Google Scholar 

  • Caupin, F., Herbert, E., Balibar, S., Cole, M.W.: Comment on Nanoscale water capillary bridges under deeply negative pressure. Phys. Chem. Lett. 463, 283–285 (2008)

    Article  Google Scholar 

  • Checco, A., Guenoun, P., Daillant, J.: Nonlinear dependence of the contact angle of nanodroplets on contact line curvatures. Phys. Rev. Lett. 91, 186101 (2003)

    Article  Google Scholar 

  • Choi, H.J., Kim, J.Y., Hong, S.D., Ha, M.Y., Jang, J.: Molecular simulation of the nanoscale water confined between an atomic force microscope tip and a surface. J. Phys. Chem. B 113(14), 4688–4697 (2009)

    Article  Google Scholar 

  • Christenson, H.K.: Confinment effects on freezing and melting. J. Phys. Condens. Matt. 13, R95–R133 (2001)

    Article  Google Scholar 

  • Derjaguin, B.V., Churaev, N.V.: Structural component of disjoining pressure. J. Colloid Interface Sci. 49, 249–255 (1974)

    Article  Google Scholar 

  • Derjaguin, B.V., Muller, V.M., Toporov, Yu.P.: Effect of contact deformation on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)

    Article  Google Scholar 

  • Fisher, R.L., Israelachvili, J.N.: Direct measurement of the effect of meniscus forces on adhesion: a study of the applicability of macroscopic thermodynamics to microscopic liquid interfaces. Colloids Surf 3, 303–319 (1981)

    Article  Google Scholar 

  • Fuller, K.N.G., Tabor, D.: The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. Lond. A324, 327–342 (1975)

    Google Scholar 

  • Greenspan, M., Tschiegg, C.: Radiation-induced acoustic cavitation: apparatus and some results. J. Res. Natl. Bur. Stand. Sect. C 71, 299–312 (1967)

    Article  Google Scholar 

  • Greenwood, J.A.: Adhesion of elastic spheres. Proc. R. Soc. Lond. A453, 1277–1297 (1997)

    MathSciNet  Google Scholar 

  • Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R Soc. Lond. A295, 300–319 (1966)

    Google Scholar 

  • He, M., Blum, A.S., Aston, D.E., Buenviaje, C., Overney, R.M., Luginbühl, R.: Critical phenomena of water bridges in nanoasperity contacts. J. Chem. Phys. 114, 1355–1360 (2001)

    Article  Google Scholar 

  • Henderson, H.J., Speedy, R.J.: A Berthelot-Bourdon tube method for studying water under tension. J. Phys. E 13, 778–782 (1980)

    Article  Google Scholar 

  • Herbert, E., Caupin, F.: The limit of metastability of water under tension: theories and experiments. J. Phys. Condens. Matter 17, S3597–S3602 (2005)

    Article  Google Scholar 

  • Hu, J., Xiao, X.-D., Ogletree, D.F., Salmeron, M.: Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 268, 267–269 (1995)

    Article  Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic, London (1992)

    Google Scholar 

  • Jagla, E.A.: Boundary lubrication properties of materials with expansive freezing. Phys. Rev. Lett. 88, 245504 (2002)

    Article  Google Scholar 

  • Jang, J., Ratner, M.A., Schatz, G.C.: Atomic-scale roughness effect on capillary force in atomic force microscopy. J Phys. Chem. B. Lett 110, 659–662 (2006)

    Article  Google Scholar 

  • Jinesh, K.B., Frenken, J.W.M.: Capillary condensation in atomic scale friction: how water acts like a glue. Phys. Rev. Lett. 96, 166103 (2006)

    Article  Google Scholar 

  • Johnson, J.L.: Mechanics of adhesion. Tribol. Int. 31, 413–418 (1998)

    Article  Google Scholar 

  • Johnson, K.L.: Adhesion and friction between a smooth elastic spherical asperity and a plane surface. Proc. R Soc. Lond. A453, 163–179 (1997)

    Google Scholar 

  • Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc R. Soc. Lond. A324, 301–313 (1971a)

    Google Scholar 

  • Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact angle of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971b)

    Article  Google Scholar 

  • Jones, R., Pollock, H.M., Cleaver, J.A.S., Hodges, C.S.: Adhesion forces between glass and silicon surfaces in air studied by AFM. Langmuir 18, 8045–8055 (2002)

    Article  Google Scholar 

  • Kiselev, S.B., Levelt-Sengers, J.M.H., Zheng, Q.: Physical limit to the stability of superheated and stretched water. In: White, H.J., et al. (eds.) Proceedings of the 12th International Conference on the Properties of Water and Steam, pp. 378–385. Begell House, Orlando, FL (1995)

    Google Scholar 

  • Koch, G.W., Sillet, S.C., Jennings, G.W., Davis, S.D.: The limits of tree height. Nature 428, 851 (2004)

    Article  Google Scholar 

  • Landau, L., Lifshitz, E.: Fluid Mechanics. Pergamon, London (1959)

    Google Scholar 

  • Maugis, D.: Contact Adhesion and Rupture of Elastic Solids. Springer, Berlin (1999)

    Google Scholar 

  • Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci 150, 243–269 (1992)

    Article  Google Scholar 

  • Maugis, D.: On the contact and adhesion of rough surfaces. J Adhes Sci. Technol. 10, 161–175 (1996)

    Article  Google Scholar 

  • Miranda, P.B., Xu, L., Shen, Y.R., Salmeron, M.: Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 81, 5876–5879 (1998)

    Article  Google Scholar 

  • Nosonovsky, M.: Oil as a lubricant in ancient Middle East. JAST Tribology Online 2, 44–49 (2007a)

    Article  Google Scholar 

  • Nosonovsky, M.: Model for solid-liquid and solid-solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007b)

    Article  Google Scholar 

  • Nosonovsky, M.: Modeling size, load, and velocity-dependence on friction at micro/nanoscale. Int. J. Surf. Sci. Eng. 1, 22–37 (2007c)

    Article  Google Scholar 

  • Nosonovsky, M.: On the range of applicability of the Wenzel and Cassie equations. Langmuir 23, 9919–9920 (2007d)

    Article  Google Scholar 

  • Nosonovsky, M.: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157–3161 (2007e)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Non-adhesive patterned surfaces: superhydrophobicity and wetting regime transitions. Langmuir 24, 1525–1533 (2008a)

    Article  Google Scholar 

  • Odelius, M., Bernasconi, M., Parrinello, M.: Two-dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 78, 2855–2858 (1997)

    Article  Google Scholar 

  • Pompe, T., Fery, A., Herminghaus, S.: Measurement of contact line tension by analysis of the three-phase boundary with nanometer resolution. In: Drelich, J., Laskowski, J.S., Mittal, K.L. (eds.) Apparent and Microscopic Contact Angles, pp. 3–12. VSP, Utrecht (2000)

    Google Scholar 

  • Rowlinson, J.S., Widem, B.: Molecular Theory of Capillarity. Clarendon, Oxford (1982)

    Google Scholar 

  • Shanahan, M.E.R., Carré, A.: Viscoelastic dissipation in wetting and adhesion phenomena. Langmuir 11, 1396–1402 (1995)

    Article  Google Scholar 

  • Sirghi, L., Nakagiri, N., Sugisaki, K., Sugimura, H., Takai, O.: Effect of sample topography on adhesive force in atomic force microscopy in air. Langmuir 16, 7796–7800 (2000)

    Article  Google Scholar 

  • Stifter, T., Marti, O., Bhushan, B.: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Phys Rev. B 62, 13667–13673 (2000)

    Article  Google Scholar 

  • Szoszkiewicz, R., Riedo, E.: Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 87, 033105 (2005a)

    Article  Google Scholar 

  • Szoszkiewicz, R., Riedo, E.: Nucleation time of nanoscale water bridges. Phys. Rev. Lett. 95, 135502 (2005b)

    Article  Google Scholar 

  • Tabor, D.: Surface forces and surface interactions. J Colloid Interface Sci 58, 2–13 (1977)

    Article  Google Scholar 

  • Tas, N.R., Escalante, M., van Honschoten, J.W.: Capillary negative pressure measured by nanochannel collapse. Langmuir 26, 1473–1476 (2010)

    Article  Google Scholar 

  • Tas, N.R., Mela, P., Kramer, T., Berenschot, J.W., Van der Berg, A.: Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett. 3, 1537 (2003)

    Article  Google Scholar 

  • Thompson, P.A., Robbins, M.O.: Origin of stick-slip motion in boundary lubrication. Science 250, 792–794 (1990)

    Article  Google Scholar 

  • Thoreson, E.J., Martin, J., Burnham, N.A.: The role of few-asperity contacts in adhesion. J. Collolid. Interface Sci. 298, 94–101 (2006)

    Article  Google Scholar 

  • Trevena, D.H.: Cavitation and Tension in Liquids. Adams Hilger, Bristol (1987)

    Google Scholar 

  • Tyree, M.T.: Accent of water. Nature 423, 923 (2003)

    Article  Google Scholar 

  • Xiaoand, X., Qian, L.: Investigation of humidity-dependent capillary force. Langmuir 16, 8153–8158 (2000)

    Article  Google Scholar 

  • Xu, L., Lio, A., Hu, J., Ogletree, D.F., Salmeron, M.: Wetting and capillary phenomena of water on mica. J. Phys. Chem. B 102, 540–548 (1998)

    Article  Google Scholar 

  • Yang, S.-H., Zhang, H., Hsu, S.M.: Correction of random surface roughness on colloidal probes in measuring adhesion. Langmuir 23, 1195–1202 (2007a)

    Article  Google Scholar 

  • Yang, S.-H., Zhang, H., Nosonovsky, M., Chung, K.H.: The effect of contact geometry upon the pull-off force measurement with a colloidal probe. Langmuir 24, 743–748 (2008a)

    Article  Google Scholar 

  • Yaminsky, V.: Molecular mechanisms of hydrophobic transitions. In: Drelich, J., Laskowski, J.S., Mittal, K.L. (eds.) Apparent and Microscopic Contact Angles, pp. 47–95s. VSP, Utrecht (2000)

    Google Scholar 

  • Yang, S.-H., Gates, R., Nosonovsky, M., Cook, R.: (National Institute of Standards and Technology), private communication (2007)

    Google Scholar 

  • Yang, S.H., Nosonovsky, M., Zhang, H., Chung, K.-H.: Nanoscale water capillary bridges under deeply negative pressure. Chem. Phys. Lett. 451, 88–92 (2008b)

    Article  Google Scholar 

  • Yang, S.-H., Nosonovsky, M., Zhang, H., Chung, K.-H.: Response to the comment on ‘Nanoscale water capillary bridges under deeply negative pressure’ by Caupin et al. Chemical Physics Letters 463, 286–287 (2008c)

    Article  Google Scholar 

  • Young, T.: An essay on cohesion of fluids. Phil. Trans. R. Soc. 95, 65–87 (1805)

    Article  Google Scholar 

  • Zheng, Q., Green, J., Kieffer, J., Poole, P.H., Shao, J., Wolf, G.H., Angell, A.C.: Limiting tensions for liquids and glasses from laboratory and MD studies. In: Imre, A.R., et al. (eds.) Liquids Under Negative Pressure, pp. 33–46. Kluwer, Dorchester (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nosonovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nosonovsky, M., Rohatgi, P.K. (2011). Thermodynamic Foundations of Wetting and Capillary Phenomena. In: Biomimetics in Materials Science. Springer Series in Materials Science, vol 152. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0926-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0926-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0925-0

  • Online ISBN: 978-1-4614-0926-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics