Skip to main content

Thermodynamic Principles of Self-Healing Metallic Materials

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 152))

Abstract

In this chapter, the thermodynamics of self-healing is considered with an emphasis on metallic materials. All complex biological organisms have the ability to repair minor damage. Incorporating the self-repair function into inorganic systems is of growing interest for materials scientists. So far, most recent studies have concentrated on polymers and ceramics because it is easier to incorporate self-healing in nonmetallic materials than in metallic materials. However, metallic self-healing alloys and composites are of great practical importance. We review the design principles of self-healing materials using the nonequilibrium thermodynamics approach and the concept of hierarchical organization. The generalized thermodynamic force that leads to healing is induced by bringing the system away from thermodynamic equilibrium. We focus on the three major methods of imparting the ability for self-healing in metallic systems: precipitation-induced healing, embedding shape-memory alloys, and embedding a low-melting point alloy in the alloy matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, H.M., Keller, M.W., Moore, J.S., Sottos, H.R., White, S.R.: Self-healing polymers and composites. In: van der Zwaag, S. (ed.) Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science, pp. 19–44. Springer, Dordrecht, The Netherlands (2007)

    Chapter  Google Scholar 

  • Belko, V.O., Bondarenko, P.N., Emelyanov, O.A.: The dynamic characteristics of self-healing processes in metal film capacitors. Russ Electr Eng 78, 138–142 (2007)

    Article  Google Scholar 

  • Bender, M., Olson, G.B.: Computational thermodynamics-based design of nanodispersion-strengthened shape memory alloys. SMST-2007: Proceedings of International Conference on Shape Memory and Superelastic Technol., pp. 115–122. (2008).

    Google Scholar 

  • Bond, I.P., Trask, R.S., Williams, H.R., Williams, J.R.: Self-healing fiber-reinforced polymer composites: an overview. In: van der Zwaag, S. (ed.) Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science, pp. 115–138. Springer, Dordrecht, The Netherlands (2007)

    Chapter  Google Scholar 

  • Brinson, L.C.: 1D constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant materials functions and redefined martensite internal variable. J. Intelligent Mater Sys. Struct. 4, 229–242 (1993)

    Article  Google Scholar 

  • Bruck, H.A., Evans, J.J., Peterson, M.L.: The role of mechanics in biological and biologically-inspired materials. Exp Mech 42, 361–371 (2002)

    Article  Google Scholar 

  • Bryant, M.D., Khonsari, M.M., Ling, F.F.: On the thermodynamics of degradation. Proc. R. Soc. Lond. A 464, 2001–2014 (2008)

    Article  MATH  Google Scholar 

  • Buha, J., Lumley, R.N., Crosky, A.J., Hono, K.: Secondary precipitation in an Al-Mg-Si-Cu alloy. Acta Mater. 55, 3015–3024 (2007)

    Article  Google Scholar 

  • Burgess, S.C.: Reliability and safety strategies in living organisms: potential for biomimicking. J. Proc Inst. Mech Eng E 216, 1–13 (2002)

    Article  Google Scholar 

  • Burton, D.S., Gao, X., Brinson, L.C.: Finite element simulation of a self-healing shape memory alloy composite. Mech. Mater. 38, 525–537 (2006)

    Article  Google Scholar 

  • Chen, Q., Amano, R.S., Xin, M.: Experimental and computational study of R134A condensation heat transfer inside the micro-FIN tubes. Int. J. Heat Mass Transfer 41, 785–791 (2005)

    Article  Google Scholar 

  • Craig, N.: Entropy analysis: an introduction to chemical thermodynamics. VCH, New York (1992)

    Google Scholar 

  • Dry, C.: Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater. Struct 3, 118–123 (1994)

    Article  Google Scholar 

  • Feng, Q.L., Cui, F.Z., Pu, G., Wang, R.Z., Li, H.D.: Crystal orientation, toughening mechanisms and a mimic of nacre. Mater. Sci. Eng. C 11, 19–25 (2000)

    Article  Google Scholar 

  • Files, B., Olson, G.: Terminator 3: biomimetic self-healing alloy composite in SMST. In: Proceedings of Second International Conference on Shape Memory and Superelastic Technology, pp. 281–286. Pacific Grove, CA (1997)

    Google Scholar 

  • Fox-Rabinovich, G.S., Totten, G.E. (eds.): Self-organization during friction: advance surface engineered materials and systems design. CRC Taylor and Francis, Boca Raton, FL (2006)

    Google Scholar 

  • Ghosh, S.K. (ed.): Self-Healing Materials: Fundamentals, Design Strategies, and Applications. Wiley WCH, Weinheim (2009)

    Google Scholar 

  • Ghosh, P.K., Ray, S., Rohatgi, P.K.: Incorporation of alumina particles in aluminum-magnesium alloy by stirring the melt. Trans Jn. Inst. Metals. 25, 440–444 (1984)

    Google Scholar 

  • De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Interscience, NY (1962)

    Google Scholar 

  • Hautakangas, S.: Positron Annihilation Spectroscopy as a Tool to Develop Self Healing in Aluminium Alloys. In Proceedings of 14th International Conference on Positron Annihilation, ICPA 14, July 23–28, 2006

    Google Scholar 

  • Hautakangas, S., Schut, H., van der Zwaag, S., Rivera Diaz del Castillo, P.E.J., van Dijk, N.H.: Positron annihilation spectroscopy as a tool to develop self-healing in aluminum alloys. Phys. Status. Solid. 4, 3469–3472 (2007a)

    Article  Google Scholar 

  • Hautakangas, S., Schut, H., van der Zwaag, S., del Castillo, R.D., van Dijk, N.H.: The role of the aging temperature in the self-healing kinetics in an underaged AA2024 aluminum alloy. Proceedings of 1st International Conference on Self-Healing Materials, Noordwijik aan Zee, The Netherlands, 18–20 April 2007.

    Google Scholar 

  • Hautakangas, S., Schut, H., van Dijk, N.H.: Self-healing of deformation damage in underaged Al-Cu-Mg alloys. Scripta Mater. 58, 719–722 (2008)

    Article  Google Scholar 

  • He, S.M., van Dijk, N.H., Schut, H., van der Zwaag, S.: Self healing in Fe-Cu and Fe-Cu-B-N-Ce alloys studied by positron annihilation spectroscopy. In Proceedings of 2nd International Conference on Self-healing Materials, Chicago, 2009.

    Google Scholar 

  • Jha, A.K., Prasad, S.V., Upadhyaya, G.S.: Sintered 6061 aluminium alloy – solid lubricant particle composites: sliding wear and mechanism of lubrication. Wear 133, 163 (1989)

    Article  Google Scholar 

  • Jones, F.R., Zhang, W., Hayes, S.A.: Thermally induced self-healing of thermosetting resins and matrices of smart composites. In: van der Zwaag, S. (ed.) Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science. Springer, Dordrecht, The Netherlands (2007)

    Google Scholar 

  • Jonkers, H.M.: Self healing concrete: a biological approach. In: van der Zwaag, S. (ed.) Self healing materials – An Alternative Approach to 20 Centuries of Materials Science, pp. 195–204. Springer, New York (2007)

    Chapter  Google Scholar 

  • Jonkers, H.M., Schlangen, E.: Towards a sustainable bacterially-mediated self healing concrete. Proceedings of 2nd International Conference on Self-Healing Materials, Chicago (2009)

    Google Scholar 

  • Kalra, A., Garde, S., Hummer, G.: Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U.S.A 100, 10175–10180 (2003)

    Article  Google Scholar 

  • Kim, S., Lorente, S., Bejan, A.: Vascularized materials: tree-shaped flow architectures matched canopy to canopy. J. Appl. Phys. 100, 063525 (2006)

    Article  Google Scholar 

  • Laha, K., Kyono, J., Sasaki, T., Kishimoto, S., Shinya, N.: Improved creep strength and creep ductility of type 347 austenitic stainless steel through the self-healing effect of boron for creep cavitation. Metal. Mater. Trans. 36A, 399–409 (2005)

    Article  Google Scholar 

  • Laha, K., Kyono, J., Shinya, N.: Some chemical and microstructural factors influencing creep cavitation resistance of austenitic stainless steels. Phil. Mag. 87, 2483–2505 (2007a)

    Article  Google Scholar 

  • Laha, K., Kyono, J., Shinya, N.: An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steels. Scripta Mater. 56, 915–918 (2007b)

    Article  Google Scholar 

  • Lee, E.-K., Amano, R.S., Rohatgi, P.K.: Metal matrix composite solidification in the presence of cooled fibers: numerical simulation and experimental observation. Heat Mass Transfer 43, 741–748 (2007)

    Article  Google Scholar 

  • Lee, L., Kim, S., Lorente, S., Bejan, A.: Vascularization with trees matched canopy to canopy: diagonal channels with multiple sizes. Int. J. Heat Mass Transfer 51, 2029–2040 (2008)

    Article  Google Scholar 

  • Liu, Z.W., Bando, Y., Mitome, M., Zhan, J.: Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Phys. Rev. Lett. 93, 095504 (2004)

    Article  Google Scholar 

  • Lucci, J.M., Amano, R., Rohatgi, P.K.: Computational analysis of self-healing in a polymer matrix with microvascular networks. Proceedings of ASME Design Engineering Technical Conference 2008DETC, ASME, NY (2008)

    Google Scholar 

  • Lucci, J.M., Amano, R., Rohatgi, P.K., Schultz, B.: Experimental and computational analysis of self-healing in an aluminum alloy. Proceedings of Mechanical Congress and Exhibition, IMECE2008-68304 (2008a)

    Google Scholar 

  • Lucci, J.M., Amano, R.S., Rohatgi, P.K., Schultz, B.: Self-healing in an aluminum alloy reinforced with microtubes. Proceedings of Energy Nano08 2008b ASME Turbo Expo, ENIC2008-53011

    Google Scholar 

  • Lumley, R.: Advances in self healing of metals. In: van der Zwaag, S. (ed.) Self Healing Materials: an Alternative Approach to 20 Centuries of Materials Science. Springer Series in Materials Science, vol. 100, pp. 219–254. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  • Lumley, R.M., Schaffer, G.B.: Precipitation induced densification in a sintered Al-Zn-Mg-Cu alloy. Scripta Mater. 55, 207–210 (2006)

    Article  Google Scholar 

  • Lumley, R.N., Morton, A.J., Polmear, L.J.: Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing. Acta Mater. 50, 3597–3608 (2002)

    Article  Google Scholar 

  • Lumley, R.N., Polmear, L.J., Morton, A.J.: Interrupted aging and secondary precipitation in aluminum alloys. Mater. Sci. Technol. 19, 1483–1490 (2003)

    Article  Google Scholar 

  • Manuel, M.V.: Design of a biomimetic self healing alloy composite. PhD thesis, Northwestern University (2007)

    Google Scholar 

  • Manuel, M.V.: Principles of self-healing in metals and alloys: an introduction. In: Ghosh, S.K. (ed.) Self-healing Materials: Fundamentals, Design Strategies, and Applications, pp. 251–266. Wiley WCH, Weinheim (2009)

    Google Scholar 

  • Manuel, M.V., Olson, G.B.: Biomimetic self-healing metals. Proceedings of 1st International Conference on Self-Healing Materials, Noordwijik aan Zee, The Netherlands, 18–20 April 2007

    Google Scholar 

  • Manuel, M., Olson, G.B.: Biologically inspired self-healing metals. Proceednigs of 2nd International Conference on Self-healing Materials, Chicago, 2009

    Google Scholar 

  • Nakao, W., Mori, S., Nakamura, J., Takahashi, K., Ando, K.: Self-crack-healing behavior of mullite/SiC particle/SiC whisker multi–composite and potential use for ceramic springs. J. Am. Ceramic Soc. 89, 1352–1357 (2006)

    Article  Google Scholar 

  • Nosonovsky, M.: From wear to self-healing in nanostructured biological and technical surfaces. Proceedings of ASME/STLE International Joint Tribology Conference IJTC2009, Memphis, ASME (2009)

    Google Scholar 

  • M. Nosonovsky. Entropy in Tribology (2010a)

    Google Scholar 

  • M. Nosonovsky. Self-organization at the frictional interface for green tribology. Phil. Trans. R. Soc. A (2010b)

    Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics. Springer-Verlag, Heidelberg, Germany (2008d)

    MATH  Google Scholar 

  • Nosonovsky, M., Esche, S.K.: A Paradox of decreasing entropy in multiscale Monte Carlo grain growth simulation. Entropy 10, 49–54 (2008a)

    Article  MATH  Google Scholar 

  • Nosonovsky, M., Esche, S.K.: Multiscale effects in crystal grain growth and physical properties of metals. Phys. Chem. Chem. Phys. 10, 5192–5195 (2008b)

    Article  Google Scholar 

  • Nosonovsky, M., Amano, R., Lucci, J.M., Rohatgi, P.K.: Physical chemistry of self-organization and self-healing in metals. Phys. Chem. Chem. Phys. 11, 9530–9536 (2009c)

    Article  Google Scholar 

  • Olson, G.B.: Computational design of hierarchically structured materials. Science 277, 1237–1242 (1997)

    Article  Google Scholar 

  • Olson, G.B., Hartman, H.: Martensite and life-displacive transformations as biological processes. Journal De Physique 43, 855–865 (1982)

    Google Scholar 

  • Olson, G., Zhang, S., Manuel, M.: Self-healing metals: perspective from the Chicago school. In Proceedings of 2nd International Conference on Self-healing Materials, Chicago (2009)

    Google Scholar 

  • Perkins, J.: Ti-Ni and Ti-Ni-X shape memory alloys. Metals Forum 4, 153–163 (1981a)

    Google Scholar 

  • Perkins, J.: Shape memory behavior and thermoelastic martensitic transformations. Mater. Sci. Eng. 51, 181–192 (1981b)

    Article  Google Scholar 

  • Prigogine, I.: Introduction to thermodynamics of irreversible processes, 2nd edn. Interscience, New York, NY (1961)

    MATH  Google Scholar 

  • Prigogine, I., Nicolis, G.: Self-organization in Non-equilibrium Systems. Wiley, NY (1977)

    Google Scholar 

  • Rohatgi, P.K., Asthana, R., Das, S.: Solidification, structures, and properties of cast metal - ceramic particle composites. Int Metals Rev 31, 115–139 (1986)

    Article  Google Scholar 

  • Rohatgi, P.K., Pai, B.C., Panda, S.C.: Preparation of cast aluminum-silica particulate composites. J Mater. Sci. 14, 2277–2283 (1979)

    Article  Google Scholar 

  • Ryan, N.J.: Using platelet technology to seal and locate leaks in subsea umbilical lines. Offshore Technology Conference held in Houston, OTC-18882-PP, 30 April–3 May 2007

    Google Scholar 

  • Sen, R., Govindaraj, A., Rao, C.N.R.: Metal-filled and hollow carbon nanotubes obtained by the decomposition of metal-containing free precursor molecules. Chem. Mater. 9, 2078–2081 (1997)

    Article  Google Scholar 

  • Shinya, N., Kyono, J., Laha, K.: Self-healing effect of boron nitride precipitation in austenitic stainless steel. J. Intell Mater Syst. Struct. 17, 1127–1133 (2006)

    Article  Google Scholar 

  • Sloof, W.G.: Self healing in coatings at high temperatures. In: van der Zwaag, S. (ed.) Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science, pp. 309–321. Springer, Dordrecht, The Netherlands (2007)

    Chapter  Google Scholar 

  • Slowik, M.A.: Research: Self-Healing Materials Using Electro-hydrodynamics. http://www.princeton.edu/~cml/html/research/self_healing.html (2009). Accessed 31 Oct 2009

  • Takahashi, K., Ando, K., Nakao, W., Tsutagawa, Y.: Effect of SiC nano-sizing on self-crack-healing during service. Proceedings of 1st International Conference on Self-Healing Materials, Noordwijik aan Zee, The Netherlands, 18–20 April 2007

    Google Scholar 

  • Therriault, D., White, S.R., Lewis, J.A.: Chaotic mixing in threedimensional microvascular networks fabricated by direct-write assembly. Nat Mater. 2, 265–271 (2003)

    Article  Google Scholar 

  • Tolstoi, D.M.: Significance of the normal degree of freedom and natural normal vibrations in contact friction. Wear 10, 199–213 (1967)

    Article  Google Scholar 

  • Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S., White, S.R.: Self-healing materials with microvascular netweorks. Nat Mater. 6, 581–585 (2007)

    Article  Google Scholar 

  • Trask, R.S., Williams, G.J., Bond, I.: Bioinspired self-healing of advanced composite structures using hollow glass fibers. J. R. Soc. Interface 4, 363–373 (2007)

    Article  Google Scholar 

  • Trask, R.S., Bond, I.P.: Biomimetic self-healing of advanced composite structures using hollow glass fibers. Smart Mater. Struct. 15, 704–710 (2006)

    Article  Google Scholar 

  • Wang, Z.X., Dutta, I., Majumdar, B.S.: Thermomechanical response of a lead-free solder reinforced with a shape-memory alloy. Scripta Mater. 54, 627–632 (2005)

    Google Scholar 

  • White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409, 794–797 (2001)

    Article  Google Scholar 

  • Williams, G.J., Trask, R.S., Bond, I.P.: Self-healing functionality for CFRP. Proceedings of 1st International Conference on Self-Healing Materials, Noordwijik aan Zee, The Netherlands, 18–20 April 2007

    Google Scholar 

  • Wool, R.P.: Self-healing materials: a review. Soft Matter 4, 400–418 (2008)

    Article  Google Scholar 

  • Xiao, Y., Amano, R.S.: Aluminized composite solid propellant particle path in combustion chamber of solid rocket motor. Advances in Fluid Mechanics, pp. 153–164. WIT, UK (2006)

    Google Scholar 

  • Zhang, M.Q., Rong, M.Z., Yin, T.: Self-healing polymers and polymer composites. In: Ghosh, S.K. (ed.) Self-healing Materials: Fundamentals, Design Strategies, and Applications, pp. 29–72. Wiley WCH, Weinheim (2009)

    Google Scholar 

  • Zhou, B.L.: Bio-inspired study of structural materials. Mater. Sci. Eng. C 11, 13–18 (2000)

    Article  Google Scholar 

  • Zhu, A.W., Chen, J., Starke, E.A.: Precipitation strengthening in stress-aged Al-XCu alloys. Acta Mater. 48, 2239–2246 (2000)

    Article  Google Scholar 

  • Zucchelli, A., Minak, G., Lotti, F.: Self-repairing vitreous enamel coating for metal substrate. In Proceedings of 2nd International Conference on Self-Healing Materials, Chicago (2009)

    Google Scholar 

  • van der Zwaag, S. (ed.): Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science. Springer, Dordrecht, The Netherlands (2007)

    Google Scholar 

  • van der Zwaag, S.: Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character. Phil. Trans. R. Soc. A 367, 1689–1704 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nosonovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nosonovsky, M., Rohatgi, P.K. (2011). Thermodynamic Principles of Self-Healing Metallic Materials. In: Biomimetics in Materials Science. Springer Series in Materials Science, vol 152. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0926-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0926-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0925-0

  • Online ISBN: 978-1-4614-0926-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics