Skip to main content

Functional Genomics of Flowering Time in Trees

  • Chapter
  • First Online:

Abstract

Genomics of floral induction and flower development in trees is much more complex than in annual/biennial herbaceous plants. Detailed genetic models explaining different steps of these developmental processes already exist in model plants like Arabidopsis thaliana and Antirrhinum majus. Most of this basic knowledge can be easily applied to many annual/biennial angiosperm plants and, at least in part, to perennial, polycarpic plants such as trees. The transfer of knowledge from the annual to perennial plants and from model plants to economically important crops such as fruit and forest trees is currently underway. A number of major traits have been mapped in different tree species, and individual flowering gene homologues have been isolated and functionally characterized. The establishment of methods for reverse genetics studies and the development of next-generation sequencing technologies were milestones which lead to an acceleration in this field of research. The identification of candidate genes will thereby be dramatically accelerated by the availability of entire genome sequences of different tree species. The functional characterization of such candidate genes will help to complete the picture on genetics of flowering in trees bit by bit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2003) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309(5737):1052–1056

    Google Scholar 

  • Acheré V, Faivre-Rampant P, Jeandroz S, Besnard G, Markussen T, Aragones A, Fladung M, Ritter E, Favre JM (2004) A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theor Appl Genet 108:1602–1613

    Google Scholar 

  • Akinnifesi FK, Kwesiga FR, Mhango J, Mkonda A, Chilanga T, Swai R (2004) Domesticating priority for miombo indigenous fruit trees as a promising livelihood option for small-holder farmers in southern Africa. Acta Hortic 632:15–30

    Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    CAS  Google Scholar 

  • Bangerth KF (2009) Floral induction in mature, perennial angiosperm fruit trees: similarities and discrepancies with annual/biennial plants and the involvement of plant hormones. Sci Hortic 122:153–163

    CAS  Google Scholar 

  • Bernier G, Perilleux C (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3:3–16

    CAS  Google Scholar 

  • Blakely WF (1955) A key to the eucalypts. Forestry and Timber Bureau, Canberra, 359 pp

    Google Scholar 

  • Blazek J (1985) Precocity and productivity in some sweet cherry crosses. Acta Hortic 169:105–114

    Google Scholar 

  • Blazquez M, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892

    CAS  Google Scholar 

  • Blazquez M, Soowal L, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    CAS  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Google Scholar 

  • Bolotin M (1975) Photoperiodic induction of precocious flowering in a woody species Eucalyptus occidentalis Endl. Bot Gaz 136(4):358–365

    Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Den C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    CAS  Google Scholar 

  • Brunner A, Nilsson O (2004) Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytol 164:43–51

    CAS  Google Scholar 

  • Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587

    CAS  Google Scholar 

  • Carlsbecker A, Sundström J, Tandre K, Englund M, Kvarnheden A, Johanson U, Engström P (2003) The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones. Evol Dev 5:551–561

    CAS  Google Scholar 

  • Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P (2004) The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant J 40:546–557

    CAS  Google Scholar 

  • Cerezo S, Samach A, Mercado JA, Pliego-Alfaro F (2010) Agrobacterium-mediated transformation of olive (Olea europaea L.) with a Medicago truncatula gene encoding an FT-like protein. In: Abstracts of the 28th international horticultural congress, Lisbon, Portugal, 22–27 Aug 2010, p 278

    Google Scholar 

  • Chambers PGS, Potts BM, Tilyard PA (1997) The genetic control of flowering precocity in Eucalyptus globulus ssp. globulus. Silvae Genet 46:207–214

    Google Scholar 

  • Chandler J, Dean C (1994) Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana. J Exp Bot 45:1279–1288

    CAS  Google Scholar 

  • Chung YY, Kim SR, Finkel D, Yanofsky MF, An G (1994) Early flowering and reduced apical dominance results from ectopic expression of a rice MADS box gene. Plant Mol Biol 26:657–665

    CAS  Google Scholar 

  • Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206:131–137

    CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT Protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    CAS  Google Scholar 

  • Duan Y-X, Fan J, Guo W-W (2010) Regeneration and characterization of transgenic kumquat plants containing the Arabidopsis APETALA1 gene. Plant Cell Tissue Organ Cult 100:273–281

    CAS  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    CAS  Google Scholar 

  • Dunberg A (1974) Occurrence of gibberellin-like substances in Norway spruce (Picea abies (L.) Karst.) and their possible relation to growth and flowering. Stud For Suec Nr 111:1–62

    Google Scholar 

  • Dunberg A (1976) Changes in gibberellin-like substances and indole-3-acetic acid in Picea abies during the period of shoot elongation. Physiol Plant 38:186–190

    CAS  Google Scholar 

  • Dunberg A (1980) Stimulation of flowering in Picea abies by gibberellins. Silvae Genet 29(2):51–53

    CAS  Google Scholar 

  • Eccel E, Rea R, Caffarra A, Crisci A (2009) Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation. Int J Biometeorol 53:273–286

    Google Scholar 

  • Eldridge K, Davidson J, Harwood C, Van Wyk G (1993) Eucalypt domestication and breeding. Oxford University Press Inc., Oxford

    Google Scholar 

  • Ellul P, Angosto T, Garcia-Sogo B, Garcia-Hurtado N, Martin-Trillo M, Salinas M, Moreno V, Lozano R, Martinez-Zapater M (2004) Expression of Arabidopsis APETALA1 in tomato reduces its vegetative cycle without affecting plant production. Mol Breed 13:155–163

    CAS  Google Scholar 

  • Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T (2007) BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula). Physiol Plant 131:149–158

    CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of a FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    CAS  Google Scholar 

  • Eriksson S, Böhlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18:2172–2181

    CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Google Scholar 

  • Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES (1998) DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA 95:5824–5829

    CAS  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145

    CAS  Google Scholar 

  • Flachowsky H, Hättasch C, Höfer M, Peil A, Hanke MV (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    CAS  Google Scholar 

  • Fladung M, Tusch A, Markussen T, Ziegenhagen B (2000) Analysis of morphological mutants in Picea. In: Espinel S, Ritter E (eds) Proceedings of the international congress “Applications of biotechnology to forest genetics” (Biofor 99), Vitoria-Gasteiz, Spain, 22–25 Sept 1999, pp 167–170

    Google Scholar 

  • Gao M, Matsuda N, Murayama H, Toyomasu T, Mitsuhashi W, Dandekar AM, Tao R, Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘La France’) with sense and antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42

    CAS  Google Scholar 

  • Gariglio N, Rossia DEG, Mendow M, Reig C, Agusti M (2006) Effect of artificial chilling on the depth of endodormancy and vegetative and flower budbreak of peach and nectarine cultivars using excised shoots. Sci Hortic 108:371–377

    Google Scholar 

  • Garner WW, Allard HA (1923) Further studies in photoperiodism, the response of the plant to relative length of day and night. J Agric Res 23:871–920

    Google Scholar 

  • Griffin AR, Whiteman P, Rudge T, Burgess IP, Moncur M (1993) Effect of paclobutrazol on flower bud production and vegetative growth in two species of Eucalyptus. Can J For Res-Revue Canadienne De Recherche Forestiere 23:640–647

    CAS  Google Scholar 

  • Guedon Y, Legave JM (2008) Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecol Model 219:189–199

    Google Scholar 

  • Hanke MV, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit – genetic potential to trigger flowering in fruit trees. Genes Genomes Genomics 1:1–20

    Google Scholar 

  • Hasan O, Reid JB (1995) Reduction of generation time in Eucalyptus globulus. Plant Growth Regul 17:53–60

    CAS  Google Scholar 

  • Hättasch C, Flachowsky H, Hanke M-V, Lehmann S, Gau A, Kapturska D (2009) The switch to flowering: genes involved in floral induction of the apple cultivar ‘Pinova’ and the role of the flowering gene MdFT. Acta Hortic 839:701–705

    Google Scholar 

  • He ZH, Zhu Q, Dabi T, Li DB, Weigel D, Lamb C (2000) Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Res 9:223–227

    CAS  Google Scholar 

  • Heide OM (2008) Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Hortic 115:309–314

    Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    CAS  Google Scholar 

  • Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337

    CAS  Google Scholar 

  • Hoenicka H, Nowitzki O, Debener T, Fladung M (2006) Faster evaluation of floral sterility in transgenic early flowering poplar. Silvae Genet 55(6):285–291

    Google Scholar 

  • Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2008) Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta 227:1001–1011

    CAS  Google Scholar 

  • Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 104

    Google Scholar 

  • Ivonis IYu, Kyalina LV, Litvinova VB, Khokhlina EV (1982) Annual dynamics of gibberellin-like substances in needles of Norway spruce clones of different sexes. Sov Plant Physiol 28:915–920

    Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    CAS  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    CAS  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    CAS  Google Scholar 

  • Junttila O (1980) Flower bud differentiation in Salix pentandra as affected by photoperiod, temperature and growth regulators. Physiol Plant 49:127–134

    CAS  Google Scholar 

  • Kadir S (2003) Why fruit trees fail to beer. Hortic Rep MF-2166:1–3

    Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Ngyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    CAS  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    CAS  Google Scholar 

  • Knott JE (1934) Effect of a localized photoperiod on spinach. Proc Am Soc Hortic Sci 31:152–154

    Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    CAS  Google Scholar 

  • Kotoda N, Wada M, Masuda T, Soejima J (2003) The break-through in the reduction of juvenile phase in apple using transgenic approaches. Acta Hortic 625:337–343

    CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    CAS  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S-I, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol 51(4):561–575

    CAS  Google Scholar 

  • Krüssmann G (1983) Handbuch der Nadelgehölze. Paul Parey Verlag, Berlin/Hamburg

    Google Scholar 

  • Kulikowska HJ, Kopcewicz J, Zatorska Z, Szczesniak T (1978) Auxins and gibberellins in embryonic shoots of Scats pine in relation to flower sex differentiation. Acta Soc Bot Pol 47:403–409

    CAS  Google Scholar 

  • Labuschagne IF, Louw JH, Schmidt K, Sadie A (2003) Selection for increased budbreak in apple. J Am Soc Hortic Sci 128:363–373

    Google Scholar 

  • Lamb RS, Hill TA, Tan QKG, Irish VF (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079–2086

    CAS  Google Scholar 

  • Langner W (1954) Über die Ursachen einiger phänotypischer Besonderheiten bei Fichtenpfropflingen. Zeitschrift Forstgenetik Forstpflanzenzüchtung 3:83–86

    Google Scholar 

  • Langridge J (1957) Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature 180:36–37

    CAS  Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2367

    CAS  Google Scholar 

  • Legave JM, Farrera I, Almeras T, Calleja M (2008) Selecting models of apple flowering time and understanding how global warming has had an impact on this trait. J Hortic Sci Biotechnol 83:76–84

    Google Scholar 

  • Litz RE, Mathews VH, Hendrix RC, Yurgalevitch C (1991) Mango somatic cell genetics. Acta Hortic 291:133–140

    Google Scholar 

  • Longman KA (1987) The significance of juvenility for seed orchard. For Ecol Manage 19:9–16

    Google Scholar 

  • Luedeling E, Gebauer J, Buerkert A (2009a) Climate change effects on winter chill for tree crops with chilling requirements on the Arabic Peninsula. Clim Chang 96:219–237

    Google Scholar 

  • Luedeling E, Zhang MH, Luedeling V, Girvetz EH (2009b) Sensitivity of winter chill models for fruit and nut trees to climatic changes expected in California’s Central Valley. Agric Ecosyst Environ 133:23–31

    Google Scholar 

  • Mandel MA, Yanofsky MF (1995) The Arabidopsis Agl8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by Apetala 1. Plant Cell 7:1763–1771

    CAS  Google Scholar 

  • Marquard R, Hanover J (1984) Relationship between gibberellin A4/7 concentration, time of treatment and crown position on flowering of Picea glauca. Can J For Res 14:547–553

    Google Scholar 

  • Martinez-Zapater JM, Coupland G, Dean C, Koornneef M (1994) The transition to flowering in Arabidopsis. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, New York, pp 403–434

    Google Scholar 

  • Matsuda N, Ikeda K, Kurosaka M, Takashina T, Isuzugawa K, Endo T, Omura M (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Jpn Soc Hortic Sci 78:410–416

    CAS  Google Scholar 

  • Meilan R (1997) Floral induction in woody angiosperms. New Forests 14:179–202

    Google Scholar 

  • Meilan R, Sabatti M, Caiping M, Kuzminsky E (2004) An early-flowering genotype of Populus. J Plant Biol 47(1):52–56

    Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    CAS  Google Scholar 

  • Michaels SD, Amasino RM (2000) Memories of winter: vernalization and the competence to flower. Plant Cell Environ 23:1145–1153

    Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang M-L, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Man Wai C, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na J-K, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidil M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Pérez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo M-C, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, de Pamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    CAS  Google Scholar 

  • Moncur MW (1992) Effect of low temperature on floral induction of Eucalyptus lansdowneana Muell, F. and Brown, J. Subsp lansdowneana. Aust J Bot 40:157–167

    Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalisation and gibberellins signals for flowering in Arabidopsis. Plant J 35:613–623

    CAS  Google Scholar 

  • Mounzer OR, Conejero W, Nicolas E, Abrisqueta I, Garcia-Orellana YV, Tapia LM, Vera J, Abrisqueta JM, Ruiz-Sanchez MD (2008) Growth pattern and phenological stages of early-maturing peach trees under a Mediterranean climate. HortScience 6:1813–1818

    Google Scholar 

  • Naor A, Flaishman M, Stern R, Moshe A, Erez A (2003) Temperature effects on dormancy completion of vegetative buds in apple. J Am Soc Hortic Sci 128:636–641

    Google Scholar 

  • Nilsson O, Weigel D (1997) Modulating the timing of flowering. Curr Opin Biotechnol 8:195–199

    CAS  Google Scholar 

  • Nitsch JP (1957) Photoperiodism in woody plants. Proc Am Soc Hortic Sci 70:526–544

    CAS  Google Scholar 

  • Owens JN (1995) Constraints to seed production: temperate and tropical forest trees. Tree Physiol 15:477–484

    Google Scholar 

  • Owens JN, Molder M (1976) Bud development in Sitka spruce. II. Cone differentiation and early development. Can J Bot 54(8):766–779

    Google Scholar 

  • Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49:585–593

    Google Scholar 

  • Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561–566

    CAS  Google Scholar 

  • Peña L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    Google Scholar 

  • Zimmerman RH (1973) Juvenility and fl owering of fruit trees. Acta Hortic 34:139–142

    Google Scholar 

  • Perala DA, Alm AA (1990) Reproductive ecology of birch: a review. For Ecol Manage 32:1–38

    Google Scholar 

  • Poethig RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 259:923–930

    Google Scholar 

  • Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–336

    CAS  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    CAS  Google Scholar 

  • Quesada V, Dean C, Simpson GG (2005) Regulated RNA processing in the control of Arabidopsis flowering. Int J Dev Biol 49:773–780

    CAS  Google Scholar 

  • Rajan S, Markose BL (2007) Propagation of horticultural crops. In: Horticulture Science Series, ed. Peter KV. New India publishing Agency, pp. 1–275

    CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    CAS  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    CAS  Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

    CAS  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    CAS  Google Scholar 

  • Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES (2002) FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant J 29:183–191

    CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANT target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    CAS  Google Scholar 

  • Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130:6001–6012

    CAS  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 1:445–458

    Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Pacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758

    CAS  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time? Science 296:285–289

    CAS  Google Scholar 

  • Skinner JS, Meilan R, Ma C, Strauss SH (2003) The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis. Mol Breed 12:119–132

    CAS  Google Scholar 

  • Sosinski B, Gannavarapu M, Beck LE, Rajapakse S, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428

    CAS  Google Scholar 

  • Southerton S (2007) Early flowering induction and Agrobacterium transformation of the hardwood tree species Eucalyptus occidentalis. Funct Plant Biol 34:707–713

    Google Scholar 

  • Srinivasan C, Callahan A, Dardick C, Scorza R (2010) Expression of the poplar FLOWERING LOCUS T1 (FT1) gene reduces generation time in plum (Prunus domestica L.). Abstracts of the 28th international horticultural congress, Lisbon, Portugal, 22–27 Aug 2010, p 277

    Google Scholar 

  • Steven D (1994) Tropical tree seedling dynamics: recruitment patterns and their population consequences for three canopy species in Panama. J Trop Ecol 10:369–383

    Google Scholar 

  • Strauss SH, Brunner AM, Busov VB, Ma C, Meilan R (2004) Ten lessons from 15 years of transgenic Populus research. Forestry 77:455–465

    Google Scholar 

  • Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    CAS  Google Scholar 

  • Sun TP, Kamiya Y (1994) The Arabidopsis Ga1 locus encodes the cyclase ent-kaurene synthetase A of gibberellins biosynthesis. Plant Cell 6:1509–1518

    CAS  Google Scholar 

  • Sundström J, Carlsbecker A, Svensson ME, Svenson M, Johanson U, Theissen G, Engström P (1999) MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Dev Genet 25:253–266

    Google Scholar 

  • Szankowski I, Waidmann S, El-Din Saad Omar A, Flachowsky H, Hättasch C, Hanke M-V (2009) RNAi-silencing of MdTFL1 induces early flowering in apple. Acta Hortic 839:633–636

    CAS  Google Scholar 

  • Takada S, Goto K (2003) TERMINAL FLOWER2, a HETEROCHROMATIN PROTEIN 1-LIKE protein of Arabidopsis, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865

    CAS  Google Scholar 

  • Tan FC, Swain SM (2006) Genetics of flower initiation and development in annual and perennial plants. Physiol Plant 128:8–17

    CAS  Google Scholar 

  • Tandre K, Albert VA, Sundas A, Engström P (1995) Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol 27:69–78

    CAS  Google Scholar 

  • Tersoglio E, Naranjo G (2007) Estimation model of winter chilling availability in sweet cherry areas of Mendoza, Argentina. Part II. Itea-Inf Tec Econ Agraria 103:198–211

    Google Scholar 

  • Tränkner C, Lehmann S, Hoenicka H, Hanke M-V, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

    Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé C-J, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 15:1596–1604

    Google Scholar 

  • USDA/NRCS National Plant Data Center & the Biota of North America Program (2010) http://plants.usda.gov/plantguide/pdf/cs_potr5.pdf

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 13:1003–1006

    Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12):e1326. doi:10.1371/journal.pone.0001326

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus  ×  domestica Borkh.). Nat Genet 42:833–839. doi:10.1038/ng.654

    CAS  Google Scholar 

  • Vijayraghavan U, Prasad K, Meyerowitz EM (2005) Specification and maintenance of the floral meristem: interaction between positively-acting promoters of flowering and negative regulators. Curr Sci 89:1835–1843

    Google Scholar 

  • Visser T (1964) Juvenile phase and growth of apple and pear seedlings. Euphytica 13:119–129

    Google Scholar 

  • Viti R, Andreini L, Ruiz D, Egea J, Bartolini S, Iacona C, Campoy JA (2010) Effect of climatic conditions on the overcoming of dormancy in apricot flower buds in two Mediterranean areas: Murcia (Spain) and Tuscany (Italy). Sci Hortic 124:217–224

    Google Scholar 

  • Wagner D, Sablowski RWM, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–584

    CAS  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    CAS  Google Scholar 

  • Wilkie JD, Sedley M, Trevor O (2008) Regulation of floral initiation in horticultural tress. J Exp Bot 59:3215–3228

    CAS  Google Scholar 

  • William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA 101:1775–1780

    CAS  Google Scholar 

  • Williams DR, Ross JJ, Reid JB, Potts BM (1999) Response of Eucalyptus nitens seedlings to gibberellin biosynthesis inhibitors. Plant Growth Regul 27:125–129

    CAS  Google Scholar 

  • Williams DR, Potts BM, Smethurst PJ (2003) Promotion of flowering in Eucalyptus nitens by paclobutrazol was enhanced by nitrogen fertilizer. Can J For Res 33:74–78

    CAS  Google Scholar 

  • Williams DR, Potts BM, Smethurst PJ (2004) Phosphorus fertilizer can induce earlier vegetative phase change in Eucalyptus nitens. Aust J Bot 52:281–284

    CAS  Google Scholar 

  • Wilson RN, Heckman JW, Sommerville CR (1992) Gibberellin is required for flowering in Arabidopsis under short days. Plant Physiol 100:403

    CAS  Google Scholar 

  • Wiltshire RJE, Reid JB, Potts BM (1998) Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii–E. tenuiramis complex. Aust J Bot 46:45–63

    Google Scholar 

  • Yanofsky MF (1995) Floral meristems to floral organs – genes controlling early events in Arabidopsis flower development. Annu Rev Plant Physiol 46:167–188

    CAS  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    CAS  Google Scholar 

  • Yeang H-Y (2009) Circadian and solar clocks interact in seasonal flowering. Bioessays 31:1211–1218

    CAS  Google Scholar 

  • Yuceer C, Land SB, Kubiske ME, Harkess RL (2003) Shoot morphogenesis associated with flowering in Populus deltoids (Salicaceae). Am J Bot 90(2):196–206

    Google Scholar 

  • Zeevaart JAD (2006) Florigen coming of age after 70 years. Plant Cell 18:1783–1789

    CAS  Google Scholar 

  • Zhang H, Harry DE, Ma C, Yuceer C, Hsu CY, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61(10):2549–2560

    CAS  Google Scholar 

  • Zharkikh A, Troggio M, Pruss D, Cestaro A, Eldrdge G, Pindo M, Mitchell JT, Vezzulli S, Bhatnagar S, Fontana P, Viola R, Gutin A, Salamini F, Skolnick M, Velasco R (2008) Sequencing and assembly of highly heterozygous genome of Vitis vinifera L. cv Pinot noir: problems and solutions. J Biotechnol 136:38–43

    CAS  Google Scholar 

  • Zhu LH, Li XY, Welander M (2009) Can Arabidopsis AP1 gene shorten the juvenility of apple? Acta Hortic 829:259–264

    CAS  Google Scholar 

  • Zhu et al. (2010) Personal communication

    Google Scholar 

  • Zimmerman RH (1972) Juvenility and flowering in woody plants: a review. HortScience 10:1–8

    Google Scholar 

  • Zimmerman RH (1973) Juvenility and flowering of fruit trees. Acta Hortic 34:139–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda-Viola Hanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hanke, MV., Flachowsky, H., Hoenicka, H., Fladung, M. (2012). Functional Genomics of Flowering Time in Trees. In: Schnell, R., Priyadarshan, P. (eds) Genomics of Tree Crops. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0920-5_3

Download citation

Publish with us

Policies and ethics