Notch Signaling and the Developing Skeleton

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 727)


Notch signaling is an important regulator of skeletogenesis at multiple developmental stages. The Notch signaling pathway is involved in the promotion of somite segmentation, patterning and differentiation into sclerotome pre-chondrogenic cells to allow for appropriate axial skeleton development. In addition, studies performed in vitro and in vivo demonstrate that Notch signaling suppresses chondrogenic and osteoblastic differentiation and negatively regulates osteoclast formation and proliferation. Through the use of in vitro and in vivo approaches, Notch signaling has been shown to regulate somitogenesis, chondrogenesis, osteoblastogenesis and osteoclastogenesis that ultimately affect skeletogenesis. Dysregulation of Notch signaling results in congenital skeletal malformations that could reveal therapeutic potential.


Notch Signaling Notch Pathway Notch Signaling Pathway Alagille Syndrome Notch Target Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Crombrugghe B, Lefebvre V, Behringer RR et al. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 2000; 19(5):389–394.PubMedCrossRefGoogle Scholar
  2. 2.
    de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 2001; 13(6):721–727.PubMedCrossRefGoogle Scholar
  3. 3.
    Kovall RA. More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene 2008; 27(38):5099–5109.PubMedCrossRefGoogle Scholar
  4. 4.
    Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194(3):237–255.PubMedCrossRefGoogle Scholar
  5. 5.
    Shifley ET, Cole SE. The vertebrate segmentation clock and its role in skeletal birth defects. Birth Defects Res C Embryo Today 2007; 81(2):121–133.PubMedCrossRefGoogle Scholar
  6. 6.
    Gridley T. The long and short of it: somite formation in mice. Dev Dyn. 2006; 235(9):2330–2336.PubMedCrossRefGoogle Scholar
  7. 7.
    Sewell W, Kusumi K. Genetic analysis of molecular oscillators in mammalian somitogenesis: clues for studies of human vertebral disorders. Birth Defects Res C Embryo Today 2007; 81(2):111–120.PubMedCrossRefGoogle Scholar
  8. 8.
    Conlon RA, Reaume AG, Rossant J. Notch is required for the coordinate segmentation of somites. Development 1995; 121(5):1533–1545.PubMedGoogle Scholar
  9. 9.
    Huppert SS, Le A, Schroeter EH et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 2000; 405(6789):966–970.PubMedCrossRefGoogle Scholar
  10. 10.
    Oka C, Nakano T, Wakeham A et al. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 1995; 121(10):3291–3301.PubMedGoogle Scholar
  11. 11.
    Donoviel DB, Hadjantonakis AK, Ikeda M et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev 1999; 13(21):2801–2810.PubMedCrossRefGoogle Scholar
  12. 12.
    Koizumi K, Nakajima M, Yuasa S et al. The role of presenilin 1 during somite segmentation. Development 2001; 128(8):1391–1402.PubMedGoogle Scholar
  13. 13.
    Saga Y, Hata N, Koseki H et al. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 1997; 11(14):1827–1839.PubMedCrossRefGoogle Scholar
  14. 14.
    Saga Y. Genetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement. Mech Dev 1998; 75(1–2):53–66.PubMedCrossRefGoogle Scholar
  15. 15.
    Hrabe de Angelis M, McIntyre J, 2nd, Gossler A. Maintenance of somite borders in mice requires the Delta homologue D111. Nature 1997; 386(6626):717–721.PubMedCrossRefGoogle Scholar
  16. 16.
    Kusumi K, Sun ES, Kerrebrock AW et al. The mouse pudgy mutation disrupts Delta homologue D113 and initiation of early somite boundaries. Nat Genet 1998;19(3):274–278.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang N, Gridley T. Defects in somite formation in lunatic fringe-deficient mice. Nature 1998; 394(6691):374–377.PubMedCrossRefGoogle Scholar
  18. 18.
    Evrard YA, Lun Y, Aulehla A et al. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 1998; 394(6691):377–381.PubMedCrossRefGoogle Scholar
  19. 19.
    Bessho Y, Sakata R, Komatsu S et al. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 2001; 15(20):2642–2647.PubMedCrossRefGoogle Scholar
  20. 20.
    Nakagawa O, Nakagawa M, Richardson JA et al. HRT1, HRT2 and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somitic and pharyngeal arch segments. Dev Biol 1999; 216(1):72–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Fischer A, Schumacher N, Maier M et al. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 2004; 18(8):901–911.PubMedCrossRefGoogle Scholar
  22. 22.
    Leitges M, Neidhardt L, Haenig B et al. The paired homeobox gene Uncx4.1 specifies pedicles, transverse processes and proximal ribs of the vertebral column. Development 2000; 127(11):2259–2267.PubMedGoogle Scholar
  23. 23.
    Mead TJ, Yutzey KE. Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci USA 2009; 106(34):14420–14425.PubMedCrossRefGoogle Scholar
  24. 24.
    Lefebvre V, Smits P. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res 25. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002; 2(4):389–406.CrossRefGoogle Scholar
  25. 26.
    Hunziker EB, Schenk RK, Cruz-Orive LM. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg Am 1987; 69(2):162–173.PubMedGoogle Scholar
  26. 27.
    Shum L, Coleman CM, Hatakeyama Y et al. Morphogenesis and dysmorphogenesis of the appendicular skeleton. Birth Defects Res C Embryo Today 2003; 69(2):102–122.PubMedCrossRefGoogle Scholar
  27. 28.
    Gerber HP, Vu TH, Ryan AM et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999; 5(6):623–628.PubMedCrossRefGoogle Scholar
  28. 29.
    Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423(6937):332–336.PubMedCrossRefGoogle Scholar
  29. 30.
    Watanabe N, Tezuka Y, Matsuno K et al. Suppression of differentiation and proliferation of early chondrogenic cells by Notch. J Bone Miner Metab 2003; 21(6):344–352.PubMedCrossRefGoogle Scholar
  30. 31.
    Nakanishi K, Chan YS, Ito K. Notch signaling is required for the chondrogenic specification of mouse mesencephalic neural crest cells. Mech Dev 2007; 124(3):190–203.PubMedCrossRefGoogle Scholar
  31. 32.
    Fujimaki R, Toyama Y, Hozumi N et al. Involvement of Notch signaling in initiation of prechondrogenic condensation and nodule formation in limb bud micromass cultures. J Bone Miner Metab 2006; 24(3):191–198.PubMedCrossRefGoogle Scholar
  32. 33.
    Dong Y, Jesse AM, Kohn A et al. RBPjkappa∼-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 2010; 137(9):1461–1471.PubMedCrossRefGoogle Scholar
  33. 34.
    Oldershaw RA, Tew SR, Russell AM et al. Notch signaling through Jagged-1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells 2008; 26(3):666–674.PubMedCrossRefGoogle Scholar
  34. 35.
    Akiyama H, Chaboissier MC, Martin JF et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002; 16(21):2813–2828.PubMedCrossRefGoogle Scholar
  35. 36.
    Grogan SP, Olee T, Hiraoka K et al. Repression of chondrogenesis through binding of notch signaling proteins HES-1 and HEY-1 to N-box domains in the COL2A1 enhancer site. Arthritis Rheum 2008; 58(9):2754–2763.PubMedCrossRefGoogle Scholar
  36. 37.
    Crowe R, Zikherman J, Niswander L. Delta-1 negatively regulates the transition from prehypertrophic to hypertrophic chondrocytes during cartilage formation. Development 1999; 126(5):987–998.PubMedGoogle Scholar
  37. 38.
    Hilton MJ, Tu X, Wu X et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008; 14(3):306–314.PubMedCrossRefGoogle Scholar
  38. 39.
    Karlsson C, Brantsing C, Kageyama R et al. HES1 and HES5 Are Dispensable for Cartilage and Endochondral Bone Formation. Cells Tissues Organs 2010.Google Scholar
  39. 40.
    Deng ZL, Sharff KA, Tang N et al. Regulation of osteogenic differentiation during skeletal development. Front Biosci 2008; 13:2001–2021.PubMedCrossRefGoogle Scholar
  40. 41.
    Akiyama H, Kim JE, Nakashima K et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci USA 2005; 102(41):14665–14670.PubMedCrossRefGoogle Scholar
  41. 42.
    Shindo K, Kawashima N, Sakamoto K et al. Osteogenic differentiation of the mesenchymal progenitor cells, Kusa is suppressed by Notch signaling. Exp Cell Res 2003; 290(2):370–380.PubMedCrossRefGoogle Scholar
  42. 43.
    Sciaudone M, Gazzerro E, Priest L et al. Notch 1 impairs osteoblastic cell differentiation. Endocrinology 2003; 144(12):5631–5639.PubMedCrossRefGoogle Scholar
  43. 44.
    Zamurovic N, Cappellen D, Rohner D et al. Coordinated activation of notch, Wnt and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 2004; 279(36):37704–37715.PubMedCrossRefGoogle Scholar
  44. 45.
    Zanotti S, Smerdel-Ramoya A, Stadmeyer L et al. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 2008; 149(8):3890–3899.PubMedCrossRefGoogle Scholar
  45. 46.
    Deregowski V, Gazzerro E, Priest L et al. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 2006; 281(10):6203–6210.PubMedCrossRefGoogle Scholar
  46. 47.
    Engin F, Yao Z, Yang T et al. Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 2008; 14(3):299–305.PubMedCrossRefGoogle Scholar
  47. 48.
    Ducy P, Zhang R, Geoffroy V et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89(5):747–754.PubMedCrossRefGoogle Scholar
  48. 49.
    Otto F, Thornell AP, Crompton T et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997; 89(5):765–771.PubMedCrossRefGoogle Scholar
  49. 50.
    Komori T, Yagi H, Nomura S et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997; 89(5):755–764.PubMedCrossRefGoogle Scholar
  50. 51.
    Tezuka K, Yasuda M, Watanabe N et al. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 2002; 17(2):231–239.PubMedCrossRefGoogle Scholar
  51. 52.
    Nobta M, Tsukazaki T, Shibata Y et al. Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1 signaling. J Biol Chem 2005; 280(16):15842–15848.PubMedCrossRefGoogle Scholar
  52. 53.
    Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003; 4(8):638–649.PubMedCrossRefGoogle Scholar
  53. 54.
    Yoshida H, Hayashi S, Kunisada T et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345(6274):442–444.PubMedCrossRefGoogle Scholar
  54. 55.
    Simonet WS, Lacey DL, Dunstan CR et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89(2):309–319.PubMedCrossRefGoogle Scholar
  55. 56.
    Yamada T, Yamazaki H, Yamane T et al. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 2003; 101(6):2227–2234.PubMedCrossRefGoogle Scholar
  56. 57.
    Bai S, Kopan R, Zou W et al. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 2008; 283(10):6509–6518.PubMedCrossRefGoogle Scholar
  57. 58.
    Fukushima H, Nakao A, Okamoto F et al. The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 2008; 28(20):6402–6412.PubMedCrossRefGoogle Scholar
  58. 59.
    Turnpenny PD, Alman B, Cornier AS et al. Abnormal vertebral segmentation and the notch signaling pathway in man. Dev Dyn 2007; 236(6):1456–1474.PubMedCrossRefGoogle Scholar
  59. 60.
    Bulman MP, Kusumi K, Frayling TM et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 2000; 24(4):438–441.PubMedCrossRefGoogle Scholar
  60. 61.
    Dunwoodie SL, Clements M, Sparrow DB et al. Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene D113 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 2002; 129(7):1795–1806.PubMedGoogle Scholar
  61. 62.
    Whittock NV, Sparrow DB, Wouters MA et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet 2004; 74(6):1249–1254.PubMedCrossRefGoogle Scholar
  62. 63.
    Sparrow DB, Chapman G, Wouters MA et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 2006; 78(1):28–37.PubMedCrossRefGoogle Scholar
  63. 64.
    Sparrow DB, Guillen-Navarro E, Fatkin D et al. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 2008; 17(23):3761–3766.PubMedCrossRefGoogle Scholar
  64. 65.
    Sparrow DB, Sillence D, Wouters MA et al. Two novel missense mutations in HAIRY-ANDENHANCER-OF-SPLIT-7 in a family with spondylocostal dysostosis. Eur J Hum Genet 2010.Google Scholar
  65. 66.
    Loomes KM, Stevens SA, O’Brien ML et al. D113 and Notch1 genetic interactions model axial segmental and craniofacial malformations of human birth defects. Dev Dyn 2007; 236(10):2943–2951.PubMedCrossRefGoogle Scholar
  66. 67.
    Morales AV, Yasuda Y, Ish-Horowicz D. Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling. Dev Cell 2002; 3(1):63–74.PubMedCrossRefGoogle Scholar
  67. 68.
    Li L, Krantz ID, Deng Y et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 1997; 16(3):243–251.PubMedCrossRefGoogle Scholar
  68. 69.
    Oda T, Elkahloun AG, Pike BL et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 1997; 16(3):235–242.PubMedCrossRefGoogle Scholar
  69. 71.
    McDaniell R, Warthen DM, Sanchez-Lara PA et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006; 79(1):169–173.PubMedCrossRefGoogle Scholar
  70. 72.
    Olsen IE, Ittenbach RF, Rovner AJ et al. Deficits in size-adjusted bone mass in children with Alagille syndrome. J Pediatr Gastroenterol Nutr 2005; 40(1):76–82.PubMedCrossRefGoogle Scholar
  71. 73.
    Xue Y, Gao X, Lindsell CE et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 1999; 8(5):723–730.PubMedCrossRefGoogle Scholar
  72. 74.
    McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 2002; 129(4):1075–1082.PubMedGoogle Scholar
  73. 75.
    Ishii H, Nakazawa M, Yoshino S et al. Expression of notch homologues in the synovium of rheumatoid arthritis and osteoarthritis patients. Rheumatol Int 2001; 21(1):10–14.PubMedCrossRefGoogle Scholar
  74. 76.
    Karlsson C, Brantsing C, Egell S et al. Notch1, Jagged1 and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs 2008; 188(3):287–298.PubMedCrossRefGoogle Scholar
  75. 77.
    Khan IM, Palmer EA, Archer CW. Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1. Osteoarthritis Cartilage 2010; 18(2):208–219.PubMedCrossRefGoogle Scholar
  76. 78.
    Engin F, Bertin T, Ma O et al. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 2009; 18(8):1464–1470.PubMedCrossRefGoogle Scholar
  77. 79.
    Zhang P, Yang Y, Zweidler-McKay PA et al. Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 2008; 14(10):2962–2969.PubMedCrossRefGoogle Scholar
  78. 80.
    Tanaka M, Setoguchi T, Hirotsu M et al. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 2009; 100(12):1957–1965.PubMedCrossRefGoogle Scholar
  79. 81.
    Zhang P, Yang Y, Nolo R et al. Regulation of NOTCH signaling by reciprocal inhibition of HES1 and Deltex 1 and its role in osteosarcoma invasiveness. Oncogene 2010; 29(20):2916–2926.PubMedCrossRefGoogle Scholar
  80. 82.
    Hughes DP. How the NOTCH Pathway Contributes to the Ability of Osteosarcoma Cells to Metastasize. Cancer Treat Res 2010; 152:479–496.CrossRefGoogle Scholar
  81. 83.
    Nakamura E, Nguyen MT, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn 2006; 235(9):2603–2612.PubMedCrossRefGoogle Scholar
  82. 84.
    Kamiya N, Ye L, Kobayashi T et al. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 2008; 135(22):3801–3811.PubMedCrossRefGoogle Scholar
  83. 85.
    Kawanami A, Matsushita T, Chan YY et al. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun 2009; 386(3):477–482.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Division of Molecular Cardiovascular BiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations