Skip to main content

The Role of Notch Signaling in Kidney Development and Disease

  • Chapter
Book cover Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

The kidney is the body’s filter, responsible for the removal of metabolic waste and the excretion or reabsorption of electrolytes to control blood composition and pH balance. The functional unit of this filter is the nephron, whose segmented architecture has been largely conserved in form and function throughout eukaryotic evolution. Not surprisingly, the core developmental pathways that regulate the formation of the nephron have also been conserved. In particular, the Notch signaling pathway functions in both primitive and advanced nephrons to pattern domains required for the kidney’s diverse functions. In this chapter, we will discuss the role that Notch plays in directing cell fate decisions during embryonic development of the pronephros and metanephros. We will go on to discuss the later role of Notch signaling as a cyst-suppressor and the consequences of aberrant or absent Notch activity in disease and cancer. The work discussed here highlights the fundamental importance of Notch during development and homeostasis of the kidney and underlies the need for mechanistic understanding of its role towards the treatment of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saxen L. Organogenesis of the kidney. Cambridge: Cambridge University Press; 1987.

    Book  Google Scholar 

  2. Grobstein C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 1953; 118(3054):52–55.

    Article  PubMed  CAS  Google Scholar 

  3. Drummond IA. The zebrafish pronephros: a genetic system for studies of kidney development. Pediatr Nephrol 2000; 14(5):428–435.

    Article  PubMed  CAS  Google Scholar 

  4. Vize PD, Woolf AS, Bard JBL. The kidney: from normal development to congenital diseases. Amsterdam; Boston: Academic Press; 2002.

    Google Scholar 

  5. Raciti D, Reggiani L, Geffers L et al. Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 2008; 9(5):R84.

    Article  PubMed  Google Scholar 

  6. Wingert RA, Davidson AJ. The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 2008; 73(10):1120–1127.

    Article  PubMed  CAS  Google Scholar 

  7. Boyle S, de Caestecker M. Role of transcriptional networks in coordinating early events during kidney development. Am J Physiol Renal Physiol 2006; 291(1):F1–8.

    Article  PubMed  CAS  Google Scholar 

  8. Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol 2006; 22:509–529.

    Article  PubMed  CAS  Google Scholar 

  9. Dressler GR. Advances in early kidney specification, development and patterning. Development. 2009; 136(23):3863–3874.

    Article  PubMed  CAS  Google Scholar 

  10. Seufert DW, Brennan HC, DeGuire J et al. Developmental basis of pronephric defects in Xenopus body plan phenotypes. Dev Biol 1999; 215(2):233–242.

    Article  PubMed  CAS  Google Scholar 

  11. Mauch TJ, Yang G, Wright M et al. Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol 2000; 220(1):62–75.

    Article  PubMed  CAS  Google Scholar 

  12. James RG, Schultheiss TM. Patterning of the avian intermediate mesoderm by lateral plate and axial tissues. Dev Biol 2003; 253(1):109–124.

    Article  PubMed  CAS  Google Scholar 

  13. Barak H, Rosenfelder L, Schultheiss TM et al. Cell fate specification along the anterior-posterior axis of the intermediate mesoderm. Dev Dyn 2005; 232(4):901–914.

    Article  PubMed  CAS  Google Scholar 

  14. James RG, Schultheiss TM. Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 2005; 288(1):113–125.

    Article  PubMed  CAS  Google Scholar 

  15. Preger-Ben Noon E, Barak H, Guttmann-Raviv N et al. Interplay between activin and Hox genes determines the formation of the kidney morphogenetic field. Development 2009; 136(12):1995–2004.

    Article  Google Scholar 

  16. Vize PD, Jones EA, Pfister R. Development of the Xenopus pronephric system. Dev Biol 1995; 171(2):531–540.

    Article  PubMed  CAS  Google Scholar 

  17. Wingert RA, Selleck R, Yu J et al. The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 2007; 3(10):1922–1938.

    Article  PubMed  CAS  Google Scholar 

  18. McLaughlin KA, Rones MS, Mercola M. Notch regulates cell fate in the developing pronephros. Dev Biol 2000; 227(2):567–580.

    Article  PubMed  CAS  Google Scholar 

  19. Taelman V, Van Campenhout C, Solter M et al. The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen. Development 2006; 133(15):2961–2971.

    Article  PubMed  CAS  Google Scholar 

  20. Naylor RW, Jones EA. Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros. Development 2009; 136(21):3585–3595.

    Article  PubMed  CAS  Google Scholar 

  21. Zecchin E, Conigliaro A, Tiso N et al. Expression analysis of jagged genes in zebrafish embryos. Dev Dyn 2005; 233(2):638–645.

    Article  Google Scholar 

  22. Smithers L, Haddon C, Jiang YJ et al. Sequence and embryonic expression of deltaC in the zebrafish. Mech Dev 2000; 90(1):119–123.

    Article  PubMed  CAS  Google Scholar 

  23. Van Campenhout C, Nichane M, Antoniou A et al. Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Dev Biol 2006; 294(1):203–219.

    Article  PubMed  Google Scholar 

  24. Fischer A, Schumacher N, Maier M et al. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 2004; 18(8):901–911.

    Article  PubMed  CAS  Google Scholar 

  25. Rones MS, Woda J, Mercola M et al. Isolation and characterization of Xenopus Hey-1: a downstream mediator of Notch signaling. Dev Dyn 2002; 225(4):554–560.

    Article  PubMed  CAS  Google Scholar 

  26. Kopan R, Ilagan MX. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 2009; 137(2):216–233.

    Article  PubMed  CAS  Google Scholar 

  27. Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18(5):698–712.

    Google Scholar 

  28. Boyle S, Misfeldt A, Chandler KJ et al. Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 2008; 313(1):234–245.

    Article  PubMed  CAS  Google Scholar 

  29. Humphreys BD, Lin SL, Kobayashi A et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97.

    Google Scholar 

  30. Kobayashi A, Valerius MT, Mugford JW et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 2008; 3(2):169–181.

    Article  PubMed  CAS  Google Scholar 

  31. Mugford JW, Sipila P, McMahon JA et al. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 2008; 324(1):88–98.

    Article  PubMed  CAS  Google Scholar 

  32. Georgas K, Rumballe B, Valerius MT et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 2009; 332(2):273–286.

    Article  PubMed  CAS  Google Scholar 

  33. Li L, Krantz ID, Deng Y et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 1997; 16(3):243–251.

    Article  PubMed  CAS  Google Scholar 

  34. Oda T, Elkahloun AG, Pike BL et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 1997; 16(3):235–242.

    Article  PubMed  CAS  Google Scholar 

  35. McDaniell R, Warthen DM, Sanchez-Lara PA et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006; 79(1):169–173.

    Article  PubMed  CAS  Google Scholar 

  36. Hamada Y, Kadokawa Y, Okabe M et al. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 1999; 126(15):3415–3424.

    PubMed  CAS  Google Scholar 

  37. McCright B, Gao X, Shen L et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 2001; 128(4):491–502.

    Google Scholar 

  38. McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 2002; 129(4):1075–1082.

    PubMed  CAS  Google Scholar 

  39. Chen L, Al-Awqati Q. Segmental expression of Notch and Hairy genes in nephrogenesis. Am J Physiol Renal Physiol 2005; 288(5):F939–952.

    PubMed  CAS  Google Scholar 

  40. Leimeister C, Schumacher N, Gessler M. Expression of Notch pathway genes in the embryonic mouse metanephros suggests a role in proximal tubule development. Gene Expr Patterns 2003; 3(5):595–598.

    Article  Google Scholar 

  41. Piscione TD, Wu MY, Quaggin SE. Expression of Hairy/Enhancer of Split genes, Hes1 and Hes5, during murine nephron morphogenesis. Gene Expr Patterns 2004; 4(6):707–711.

    Article  PubMed  CAS  Google Scholar 

  42. Cheng HT, Kim M, Valerius MT et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development 2007; 134(4):801–811.

    Article  PubMed  CAS  Google Scholar 

  43. Surendran K, Boyle S, Barak H et al. The contribution of Notch1 to nephron segmentation in the developing kidney is revealed in a sensitized Notch2 background and can be augmented by reducing Mint dosage. Dev Biol 2010; 337(2):386–395.

    Article  PubMed  CAS  Google Scholar 

  44. Ong C, Cheng H, Chang LW et al. Target selectivity of vertebrate Notch proteins: collaboration between discrete domains and CSL binding site architecture determine activation probability. J Biol Chem 2006; 281(8):5106–5119.

    Article  PubMed  CAS  Google Scholar 

  45. Cheng HT, Miner JH, Lin M et al. Gamma-secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development 2003; 130(20):5031–5042.

    Article  PubMed  CAS  Google Scholar 

  46. Wang P, Pereira FA, Beasley D et al. Presenilins are required for the formation of comma-and S-shaped bodies during nephrogenesis. Development 2003; 130(20):5019–5029.

    Article  PubMed  CAS  Google Scholar 

  47. Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. Bioessays 2006; 28(2):117–127.

    Article  PubMed  CAS  Google Scholar 

  48. Kuure S, Sainio K, Vuolteenaho R et al. Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching. Mech Dev 2005; 122(6):765–780.

    CAS  Google Scholar 

  49. Kopan R, Ilagan MX. Gamma-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol 2004; 5(6):499–504.

    Article  PubMed  CAS  Google Scholar 

  50. Jeong HW, JU S, Koo BK et al. Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. J Clin Invest 2009; 119(11):3290–3300.

    PubMed  CAS  Google Scholar 

  51. Koo BK, Yoon MJ, Yoon KJ et al. An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One 2007; 2(11):e1221.

    Article  PubMed  Google Scholar 

  52. Liu Y, Pathak N, Kramer-Zucker A et al. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 2007; 134(6):1111–1122.

    Article  PubMed  CAS  Google Scholar 

  53. Ma M, Jiang YJ. Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genet 2007; 3(1):e18.

    Article  PubMed  Google Scholar 

  54. Blomqvist SR, Vidarsson H, Fitzgerald S et al. Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 2004; 113(11):1560–1570.

    PubMed  CAS  Google Scholar 

  55. Kurth I, Hentschke M, Hentschke S et al. The forkhead transcription factor Foxi1 directly activates the AE4 promoter. Biochem J 2006; 393(Pt 1):277–283.

    PubMed  CAS  Google Scholar 

  56. Vidarsson H, Westergren R, Heglind M et al. The forkhead transcription factor Foxi1 is a master regulator of vacuolar H-ATPase proton pump subunits in the inner ear, kidney and epididymis. PLoS One 2009; 4(2):e4471.

    Article  PubMed  Google Scholar 

  57. Artavanis-Tsakonas S, Simpson P. Choosing a cell fate: a view from the Notch locus. Trends Genet 1991; 7(11–12):403–408.

    PubMed  CAS  Google Scholar 

  58. Kobayashi T, Terada Y, Kuwana H et al. Expression and function of the Delta-1/Notch-2/Hes-1 pathway during experimental acute kidney injury. Kidney Int 2008.

    Google Scholar 

  59. Gupta S, Li S, Abedin MJ et al. Effect of Notch activation on the regenerative response to acute renal failure. Am J Physiol Renal Physiol 2010; 298(1):F209–215.

    Article  PubMed  CAS  Google Scholar 

  60. Niranjan T, Bielesz B, Gruenwald A et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 2008; 14(3):290–298.

    Article  PubMed  CAS  Google Scholar 

  61. Morrissey J, Guo G, Moridaira K et al. Transforming growth factor-beta induces renal epithelial jagged-1 expression in fibrotic disease. J Am Soc Nephrol 2002; 13(6):1499–1508.

    Article  PubMed  CAS  Google Scholar 

  62. Waters AM, Wu MY, Onay T et al. Ectopic notch activation in developing podocytes causes glomerulosclerosis. J Am Soc Nephrol 2008; 19(6):1139–1157.

    Article  PubMed  CAS  Google Scholar 

  63. Murea M, Park JK, Sharma S et al. Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis and renal function. Kidney Int 2010.

    Google Scholar 

  64. Surendran K, Selassie M, Liapis H et al. Reduced Notch signaling leads to renal cysts and papillary microadenomas. J Am Soc Nephrol 2010; 21(5):819–832.

    Article  PubMed  CAS  Google Scholar 

  65. Verdeguer F, Le Corre S, Fischer E et al. A mitotic transcriptional switch in polycystic kidney disease. Nat Med 2009.

    Google Scholar 

  66. Wang KL, Weinrach DM, Luan C et al. Renal papillary adenoma—a putative precursor of papillary renal cell carcinoma. Hum Pathol 2007; 38(2):239–246.

    Article  PubMed  CAS  Google Scholar 

  67. Yang XJ, Tan MH, Kim HL et al. A molecular classification of papillary renal cell carcinoma. Cancer Res 2005; 65(13):5628–5637.

    Article  PubMed  CAS  Google Scholar 

  68. Liang L, Zhang HW, Liang J et al. KyoT3, an isoform of murine FHL1, associates with the transcription factor RBP-J and represses the RBP-J-mediated transactivation. Biochim Biophys Acta 2008.

    Google Scholar 

  69. Sun S, Du R, Gao J et al. Expression and clinical significance of Notch receptors in human renal cell carcinoma. Pathology 2009; 41(4):335–341.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hila Barak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Barak, H., Surendran, K., Boyle, S.C. (2012). The Role of Notch Signaling in Kidney Development and Disease. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_8

Download citation

Publish with us

Policies and ethics