Skip to main content

Abstract

Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch signaling plays a fundamental role during development. Recent findings have shown that Notch signaling is dysregulated and contributes to the malignant potential of these tumors. Growing evidence point towards an important role for cancer stem cells in the initiation and maintenance of glioma and medulloblastoma. In this chapter we will cover the present findings of Notch signaling in human glioma and medulloblastoma and try to create an overall picture of its relevance in the pathogenesis of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Louis DN, Ohgaki H, Wiestler OD et al. WHO classification of tumors of the central nervous system (4th edition) 2007.

    Google Scholar 

  2. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005; 64:479–489.

    PubMed  CAS  Google Scholar 

  3. Filippini G, Falcone C, Boiardi A et al. Prognostic factors for survival in 676 consecutive patients with newly diagnosed primary glioblastoma. Neuro. Oncol 2008; 10:79–87.

    PubMed  Google Scholar 

  4. Stupp R, Hegi ME, Mason WP et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10(5):459–66.

    PubMed  CAS  Google Scholar 

  5. Smith JS, Tachibana I, Passe SM et al. PTEN mutation, EGFR amplification and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 2001; 93:1246–1256.

    PubMed  CAS  Google Scholar 

  6. Ekstrand AJ, James CD, Cavenee WK et al. Genes for epidermal growth factor receptor, transforming growth factor alpha and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 1991; 51:2164–2172.

    PubMed  CAS  Google Scholar 

  7. Wikstrand CJ, McLendon RE, Friedman AH et al. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res 1997; 57:4130–4140.

    PubMed  CAS  Google Scholar 

  8. Rickert CH, Paulus W. Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv Syst 2001; 17:503–511.

    PubMed  CAS  Google Scholar 

  9. Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 2010; 10:319–331.

    PubMed  CAS  Google Scholar 

  10. Pfister S, Remke M, Benner A et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 2009; 27:1627–1636.

    PubMed  Google Scholar 

  11. Bigner SH, Mark J, Friedman HS et al. Structural chromosomal abnormalities in human medulloblastoma. Cancer Genet. Cytogenet 1988; 30:91–101.

    CAS  Google Scholar 

  12. Lamont JM, McManamy CS, Pearson AD et al. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 2004; 10:5482–5493.

    PubMed  CAS  Google Scholar 

  13. Karajannis M, Allen JC, Newcomb EW. Treatment of pediatric brain tumors. J Cell Physiol 2008; 217:584–589.

    PubMed  CAS  Google Scholar 

  14. de Bont JM, Packer RJ, Michiels EM et al. Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol 2008; 10:1040–1060.

    PubMed  Google Scholar 

  15. Crawford JR, MacDonald TJ, Packer RJ. Medulloblastoma in childhood: new biological advances. Lancet Neurol 2007; 6:1073–1085.

    PubMed  CAS  Google Scholar 

  16. Sklar CA. Childhood brain tumors. J Pediatr Endocrinol Metab 2002; 15 Suppl 2:669–673.

    PubMed  Google Scholar 

  17. Lasky JLIII, Choe M, Nakano I. Cancer stem cells in pediatric brain tumors. Curr Stem Cell Res Ther 2009; 4:298–305.

    PubMed  CAS  Google Scholar 

  18. Llaguno SA, Chen J, Kwon C et al. Malignant Astrocytomas Originate from Neural Stem/Progenitor Cells in a Somatic Tumor Supressor Mouse Model. Cancer Cell 2009; 15:45–56.

    CAS  Google Scholar 

  19. Casalbore P, Budoni M, Ricci-Vitiani L et al. Tumorigenic potential of olfactory bulb-derived human adult neural stem cells associates with activation of TERT and NOTCH1. PloS ONE 2009; 4:e4434.

    PubMed  Google Scholar 

  20. Kadin ME, Rubinstein LJ, Nelson JS. Neonatal cerebellar medulloblastoma originating from the fetal external granular layer. J Neuropathol Exp Neurol 1970; 29:583–600.

    PubMed  CAS  Google Scholar 

  21. Rubinstein LJ. Presidential address. Cytogenesis and differentiation of primitive central neuroepithelial tumors. J Neuropathol Exp Neurol 1972; 31:7–26.

    PubMed  CAS  Google Scholar 

  22. Beatus P, Lendahl U. Notch and neurogenesis. J Neurosci Res 1998; 54:125–136.

    PubMed  CAS  Google Scholar 

  23. Somasundaram K, Reddy SP, Vinnakota K et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene 2005; 24:7073–7083.

    PubMed  CAS  Google Scholar 

  24. Phillips HS, Kharbanda S, Chen R et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression and resemble stages in neurogenesis. Cancer Cell 2006; 9:157–173.

    PubMed  CAS  Google Scholar 

  25. Xu P, Yu S, Jiang R et al. Differential expression of Notch family members in astrocytomas and medulloblastomas. Pathol Oncol Res 2009; 15:703–710.

    PubMed  CAS  Google Scholar 

  26. Xu P, Qiu M, Zhang Z et al. The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J Neurooncol 2010; 97:41–51.

    PubMed  CAS  Google Scholar 

  27. Hulleman E, Quarto M, Vernell R et al. A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med 2009; 13(1):136–46

    PubMed  CAS  Google Scholar 

  28. Seidel S, Garvalov BK, Wirta V et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 2010; 133:983–995.

    PubMed  Google Scholar 

  29. Purow BW, Haque RM, Noel MW et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 2005; 65:2353–2363.

    PubMed  CAS  Google Scholar 

  30. Kanamori M, Kawaguchi T, Nigro JM et al. Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg 2007; 106:417–427.

    PubMed  Google Scholar 

  31. Gao X, Deeb D, Jiang H et al. Synthetic triterpenoids inhibit growth and induce apoptosis in human glioblastoma and neuroblastoma cells through inhibition of prosurvival Akt, NF-kappaB and Notch1 signaling. J Neurooncol 2007; 84:147–157.

    PubMed  CAS  Google Scholar 

  32. Zhao N, Guo Y, Zhang M et al. Akt-mTOR signaling is involved in Notch-1-mediated glioma cell survival and proliferation. Oncol Rep 2010; 23:1443–1447.

    PubMed  CAS  Google Scholar 

  33. Zhang XP, Zheng G, Zou L et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem 2008; 307:101–108.

    PubMed  CAS  Google Scholar 

  34. Gaetani P, Hulleman E, Levi D et al. Expression of the transcription factor HEY1 in glioblastoma: a preliminary clinical study. Tumori 2010; 96:97–102.

    PubMed  Google Scholar 

  35. Sivasankaran B, Degen M, Ghaffari A et al. Tenascin-C is a novel RBPJkappa-induced target gene for Notch signaling in gliomas. Cancer Res 2009; 69:458–465.

    PubMed  CAS  Google Scholar 

  36. Maillard I, Pear WS. Notch and cancer: best to avoid the ups and downs. Cancer Cell 2003; 3:203–205.

    PubMed  CAS  Google Scholar 

  37. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 2003; 3:756–767.

    PubMed  CAS  Google Scholar 

  38. Solecki DJ, Liu XL, Tomoda T et al. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 2001; 31:557–568.

    PubMed  CAS  Google Scholar 

  39. Fan X, Mikolaenko I, Elhassan I et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 2004; 64:7787–7793.

    PubMed  CAS  Google Scholar 

  40. Garzia L, Andolfo I, Cusanelli E et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One 2009; 4:e4998.

    PubMed  Google Scholar 

  41. Murat A, Migliavacca E, Gorlia T et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 2008; 26:3015–3024.

    PubMed  CAS  Google Scholar 

  42. Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006; 66:7843–7848.

    PubMed  CAS  Google Scholar 

  43. Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444:756–760.

    PubMed  CAS  Google Scholar 

  44. Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5:67.

    PubMed  Google Scholar 

  45. Shiras A, Bhosale A, Shepal V et al. A unique model system for tumor progression in GBM comprising two developed human neuro-epithelial cell lines with differential transforming potential and coexpressing neuronal and glial markers. Neoplasia 2003; 5:520–532.

    PubMed  CAS  Google Scholar 

  46. Shiras A, Chettiar ST, Shepal V et al. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 2007; 25:1478–1489.

    PubMed  CAS  Google Scholar 

  47. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255:1707–1710.

    PubMed  CAS  Google Scholar 

  48. Ignatova TN, Kukekov VG, Laywell ED et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002; 39:193–206.

    PubMed  Google Scholar 

  49. Galli R, Binda E, Orfanelli U et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64:7011–7021.

    PubMed  CAS  Google Scholar 

  50. Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63:5821–5828.

    PubMed  CAS  Google Scholar 

  51. Lee J, Kotliarova S, Kotliarov Y et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9:391–403.

    PubMed  CAS  Google Scholar 

  52. Yuan X, Curtin J, Xiong Y et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 2004; 23:9392–9400.

    PubMed  CAS  Google Scholar 

  53. Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 2004; 432:396–401.

    PubMed  CAS  Google Scholar 

  54. Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003; 100:15178–15183.

    PubMed  CAS  Google Scholar 

  55. Fan X, Eberhart CG. Medulloblastoma stem cells. J Clin Oncol 2008; 26:2821–2827.

    PubMed  CAS  Google Scholar 

  56. Nakamura Y, Sakakibara S, Miyata T et al. The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 2000; 20:283–293.

    PubMed  CAS  Google Scholar 

  57. Engstrom CM, Demers D, Dooner M et al. A method for clonal analysis of epidermal growth factor-responsive neural progenitors. J Neurosci Methods 2002; 117:111–121.

    PubMed  CAS  Google Scholar 

  58. Kukekov VG, Laywell ED, Suslov O et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 1999; 156:333–344.

    PubMed  CAS  Google Scholar 

  59. Uchida N, Buck DW, He D et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000; 97:14720–14725.

    PubMed  CAS  Google Scholar 

  60. Gunther HS, Schmidt NO, Phillips HS et al. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 2008; 27:2897–2909.

    PubMed  CAS  Google Scholar 

  61. Siebzehnrubl FA, Jeske I, Muller D et al. Spontaneous in vitro transformation of adult neural precursors into stem-like cancer cells. Brain Pathol 2009; 19(3):399–408.

    PubMed  CAS  Google Scholar 

  62. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996; 175:1–13.

    PubMed  CAS  Google Scholar 

  63. Zhang QB, Ji XY, Huang Q et al. Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells. Cell Res 2006; 16:909–915.

    PubMed  CAS  Google Scholar 

  64. Varghese M, Olstorn H, Sandberg C et al. A comparison between stem cells from the adult human brain and from brain tumors. Neurosurgery 2008; 63:1022–1033.

    PubMed  Google Scholar 

  65. Globus JH, Kuhlenbeck H. The subependymal cell plate (matrix) and its relationship to brain tumors of the ependymal type. Journal of Neuropathology and Experimental Neurology 1944; 3:1–35.

    Google Scholar 

  66. Lim DA, Cha S, Mayo MC et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 2007; 9:424–429.

    PubMed  Google Scholar 

  67. Stump G, Durrer A, Klein AL et al. Notchl and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech Dev 2002; 114:153–159.

    PubMed  CAS  Google Scholar 

  68. Chiba S. Notch signaling in stem cell systems. Stem Cells 2006; 24:2437–2447.

    PubMed  CAS  Google Scholar 

  69. Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 2005; 8:709–715.

    PubMed  CAS  Google Scholar 

  70. Fan X, Matsui W, Khaki L et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006; 66:7445–7452.

    PubMed  CAS  Google Scholar 

  71. Stockhausen MT, Broholm H, Villingshøj M et al. Maintenance of EGFR and EGFRvIII expression in an in vivo and in vitro model of human glioblastoma multiforme. Submitted 2010.

    Google Scholar 

  72. Kristoffersen K, Stockhausen MT, Poulsen HS. Notch pathway blockade affects the differentiating and migratory capacity of brain tumor initiating cells. Abstract. The Society for Neuro-Oncology 2010.

    Google Scholar 

  73. Mellodew K, Suhr R, Uwanogho DA et al. Nestin expression is lost in a neural stem cell line through a mechanism involving the proteasome and Notch signalling. Brain Res Dev Brain Res 2004; 151:13–23.

    PubMed  CAS  Google Scholar 

  74. Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia 2006; 8:1072–1082.

    PubMed  CAS  Google Scholar 

  75. Mizutani K, Yoon K, Dang L et al. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 2007; 449:351–355.

    PubMed  CAS  Google Scholar 

  76. Henrique D, Adam J, Myat A et al. Expression of a Delta homologue in prospective neurons in the chick. Nature 1995; 375:787–790.

    PubMed  CAS  Google Scholar 

  77. Lewis J. Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol 1998; 9:583–589.

    PubMed  CAS  Google Scholar 

  78. Hammerle B, Tejedor FJ. A novel function of DELTA-NOTCH signalling mediates the transition from proliferation to neurogenesis in neural progenitor cells. PLoS ONE 2007; 2:e1169.

    PubMed  Google Scholar 

  79. Lewis J. Neurogenic genes and vertebrate neurogenesis. Curr Opin Neurobiol 1996; 6:3–10.

    PubMed  CAS  Google Scholar 

  80. Jeon HM, Jin X, Lee JS et al. Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E and notch signaling. Genes Dev 2008; 22:2028–2033.

    PubMed  CAS  Google Scholar 

  81. Fan X, Khaki L, Zhu TS et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010; 28:5–16.

    PubMed  CAS  Google Scholar 

  82. Monticone M, Biollo E, Fabiano A et al. z-Leucinyl-leucinyl-norleucinal induces apoptosis of human glioblastoma tumor-initiating cells by proteasome inhibition and mitotic arrest response. Mol Cancer Res 2009; 7:1822–1834.

    PubMed  CAS  Google Scholar 

  83. Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11:69–82.

    PubMed  CAS  Google Scholar 

  84. Yang ZJ, Wechsler-Reya RJ. Hit ‘em where they live: targeting the cancer stem cell niche. Cancer Cell 2007; 11:3–5.

    PubMed  CAS  Google Scholar 

  85. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170:1445–1453.

    PubMed  CAS  Google Scholar 

  86. Watanabe K, Tachibana O, Sata K et al. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 1996; 6:217–223.

    PubMed  CAS  Google Scholar 

  87. Wong AJ, Bigner SH, Bigner DD et al. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 1987; 84:6899–6903.

    PubMed  CAS  Google Scholar 

  88. Fitzgerald K, Harrington A, Leder P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 2000; 19:4191–4198.

    PubMed  CAS  Google Scholar 

  89. Miyamoto Y, Maitra A, Ghosh B et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003; 3:565–576.

    PubMed  CAS  Google Scholar 

  90. Stockhausen MT, Sjolund J, Axelson H. Regulation of the Notch target gene Hes-1 by TGFalpha induced Ras/MAPK signaling in human neuroblastoma cells. Exp Cell Res 2005; 310:218–228.

    PubMed  CAS  Google Scholar 

  91. Weijzen S, Rizzo P, Braid M et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 2002; 8:979–986.

    PubMed  CAS  Google Scholar 

  92. Zeng Q, Li S, Chepeha DB et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 2005; 8:13–23.

    PubMed  CAS  Google Scholar 

  93. Weickert CS, Webster MJ, Colvin SM et al. Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J Comp Neurol 2000; 423:359–372.

    PubMed  CAS  Google Scholar 

  94. Androutsellis-Theotokis A, Leker RR, Soldner F et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006; 442:823–826.

    PubMed  CAS  Google Scholar 

  95. Brennan C, Momota H, Hambardzumyan D et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 2009; 4:e7752.

    PubMed  Google Scholar 

  96. Rajasekhar VK, Viale A, Socci ND et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell 2003; 12:889–901.

    PubMed  CAS  Google Scholar 

  97. Purow BW, Sundaresan TK, Burdick MJ et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 2008; 29:918–925.

    PubMed  CAS  Google Scholar 

  98. Schlegel U, Moots PL, Rosenblum MK et al. Expression of transforming growth factor alpha in human gliomas. Oncogene 1990; 5:1839–1842.

    PubMed  CAS  Google Scholar 

  99. Tang P, Steck PA, Yung WK. The autocrine loop of TGF-alpha/EGFR and brain tumors. J Neurooncol 1997; 35:303–314.

    PubMed  CAS  Google Scholar 

  100. Zheng Y, Lin L, Zheng Z. TGF-alpha induces upregulation and nuclear translocation of Hes1 in glioma cell. Cell Biochem Funct 2008; 26:692–700.

    PubMed  CAS  Google Scholar 

  101. Traiffort E, Angot E, Ruat M. Sonic Hedgehog signaling in the mammalian brain. J Neurochem 2010; 113:576–590.

    PubMed  CAS  Google Scholar 

  102. Hallahan AR, Pritchard JI, Hansen S et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 2004; 64:7794–7800.

    PubMed  CAS  Google Scholar 

  103. Dakubo GD, Mazerolle CJ, Wallace VA. Expression of Notch and Wnt pathway components and activation of Notch signaling in medulloblastomas from heterozygous patched mice. J Neurooncol 2006; 79:221–227.

    PubMed  CAS  Google Scholar 

  104. Yokota N, Mainprize TG, Taylor MD et al. Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 2004; 23:3444–3453.

    PubMed  CAS  Google Scholar 

  105. Di Marcotullio L, Ferretti E, Greco A et al. Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 2006; 8:1415–1423.

    PubMed  Google Scholar 

  106. Chigurupati S, Venkataraman R, Barrera D et al. Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 2010; 70:418–427.

    PubMed  CAS  Google Scholar 

  107. Gustafsson MV, Zheng X, Pereira T et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9:617–628.

    PubMed  CAS  Google Scholar 

  108. Gale NW, Dominguez MG, Noguera I et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 2004; 101:15949–15954.

    PubMed  CAS  Google Scholar 

  109. Mailhos C, Modlich U, Lewis J et al. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 2001; 69:135–144.

    PubMed  CAS  Google Scholar 

  110. Patel NS, Li JL, Generali D et al. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 2005; 65:8690–8697.

    PubMed  CAS  Google Scholar 

  111. Noguera-Troise I, Daly C, Papadopoulos NJ et al. Blockade of Dll4 inhibits tumour growth by promoting nonproductive angiogenesis. Nature 2006; 444:1032–1037.

    PubMed  CAS  Google Scholar 

  112. Ridgway J, Zhang G, Wu Y et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006; 444:1083–1087.

    PubMed  CAS  Google Scholar 

  113. Li JL, Sainson RC, Shi W et al. Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function and promotes tumor growth in vivo. Cancer Res 2007; 67:11244–11253.

    PubMed  CAS  Google Scholar 

  114. Paris D, Quadros A, Patel N et al. Inhibition of angiogenesis and tumor growth by beta and gamma-secretase inhibitors. Eur J Pharmacol 2005; 514:1–15.

    PubMed  CAS  Google Scholar 

  115. Maity A, Pore N, Lee J et al. Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3′-kinase and distinct from that induced by hypoxia. Cancer Res 2000; 60:5879–5886.

    PubMed  CAS  Google Scholar 

  116. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3:721–732.

    PubMed  CAS  Google Scholar 

  117. Thon N, Damianoff K, Hegermann J et al. Presence of pluripotent CD133+ cells correlates with malignancy of gliomas. Mol Cell Neurosci 2010; 43:51–59.

    PubMed  CAS  Google Scholar 

  118. Zhang M, Song T, Yang L et al. Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res 2008; 27:85.

    PubMed  CAS  Google Scholar 

  119. Wong GT, Manfra D, Poulet FM et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004; 279:12876–12882.

    PubMed  CAS  Google Scholar 

  120. Wang J, Wakeman TP, Lathia JD et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 2010; 28:17–28.

    PubMed  CAS  Google Scholar 

  121. Vredenburgh JJ, Desjardins A, Herndon JE et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007; 13:1253–1259.

    PubMed  CAS  Google Scholar 

  122. Poulsen HS, Grunnet K, Sorensen M et al. Bevacizumab plus irinotecan in the treatment patients with progressive recurrent malignant brain tumours. Acta Oncol 2009; 48:52–58.

    PubMed  CAS  Google Scholar 

  123. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008; 8:592–603.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Thérése Stockhausen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Stockhausen, MT., Kristoffersen, K., Poulsen, H.S. (2012). Notch Signaling and Brain Tumors. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_22

Download citation

Publish with us

Policies and ethics