Skip to main content

Notch Signaling and Intestinal Cancer

  • Chapter
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

In recent years, a substantial body of evidence has accumulated to support the notion that signaling pathways known to be important during embryonic development play important roles in regulating self-renewing tissues and tumorigenesis. In this context, Notch signaling is now recognized as essential for maintaining progenitor/ stem cell population as well as for regulating cell lineage differentiation in the normal intestinal mucosa. Many studies have also showed that Notch signaling is constitutively activated in colorectal cancer and its inhibition is able to suppress the cell growth and sensitize cancer cells to treatment-induced apoptosis. Therefore, discovery of the role of γ-secretase in the Notch signaling activation has prompted intensive research on the potential use of γ-secretase inhibitors in the treatment of colon cancer. This chapter reviews the current understanding and research findings of the role of Notch signaling in intestinal homeostasis and colorectal cancer and discusses the possible Notch targeting approaches as novel molecular therapy for intestinal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLin VA, Henning SJ, Jamrich M. The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 2009; 136(7):2074–2091.

    Article  PubMed  CAS  Google Scholar 

  2. Roberts DJ. Molecular mechanisms of development of the gastrointestinal tract. Dev Dyn 2000; 219(2):109–120.

    Article  PubMed  CAS  Google Scholar 

  3. Scoville DH, Sato T, He XC et al. Current view: intestinal stem cells and signaling. Gastroenterology 2008; 134(3):849–864.

    Article  PubMed  CAS  Google Scholar 

  4. Barker N, van Es JH, Kuipers J et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449(7165):1003–1007.

    Article  PubMed  CAS  Google Scholar 

  5. Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008; 40(7):915–920.

    Article  PubMed  CAS  Google Scholar 

  6. Sato T, Vries RG, Snippert HJ et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459(7244):262–265.

    Article  PubMed  CAS  Google Scholar 

  7. Ootani A, Li X, Sangiorgi E et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 2009; 15(6):701–706.

    Article  PubMed  CAS  Google Scholar 

  8. Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol 2004; 20:695–723.

    Article  PubMed  CAS  Google Scholar 

  9. Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science 2005; 307(5717):1904–1909.

    Article  PubMed  CAS  Google Scholar 

  10. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137(2):216–233.

    Article  PubMed  CAS  Google Scholar 

  11. Jarriault S, Brou C, Logeat F et al. Signalling downstream of activated mammalian Notch. Nature 1995; 377(6547):355–358.

    Article  PubMed  CAS  Google Scholar 

  12. Zheng H, Pritchard DM, Yang X et al. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2009; 2966(3):G490–498.

    Article  Google Scholar 

  13. Yang Q, Bermingham NA, Finegold MJ et al. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001; 294(5549):2155–2158.

    Article  Google Scholar 

  14. Jensen J, Pedersen EE, Galante P et al. Control of endodermal endocrine development by Hes-1. Nat Genet 2000; 24(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  15. Schroder N, Gossler A. Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns 2002; 2(3–4):247–250.

    Article  PubMed  CAS  Google Scholar 

  16. Sander GR, Powell BC. Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem 2004; 52(4):509–516.

    Article  PubMed  CAS  Google Scholar 

  17. Akiyama J, Okamoto R, Iwasaki M et al. Delta-like 1 expression promotes goblet cell differentiation in Notch-inactivated human colonic epithelial cells. Biochem Biophys Res Commun 2010; 393(4):662–667.

    Article  PubMed  CAS  Google Scholar 

  18. van Es JH, van Gijn ME, Riccio O et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005; 435(7044):959–963.

    Article  PubMed  Google Scholar 

  19. Vooijs M, Ong CT, Hadland B et al. Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development 2007; 134(3):535–544.

    Article  PubMed  CAS  Google Scholar 

  20. Leow CC, Romero MS, Ross S et al. Hath1, down-regulated in colon adenocarcinomas, inhibits proliferation and tumorigenesis of colon cancer cells. Cancer Res 2004; 64(17):6050–6057.

    Article  PubMed  CAS  Google Scholar 

  21. Crosnier C, Vargesson N, Gschmeissner S et al. Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 2005; 132(5):1093–1104.

    Article  PubMed  CAS  Google Scholar 

  22. Gregorieff A, Stange DE, Kujala P et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology 2009; 137(4):1333–1345 e1331-1333.

    Article  PubMed  CAS  Google Scholar 

  23. Jubb AM, Turley H, Moeller HC et al. Expression of delta-like ligand 4 (Dll4) and markers of hypoxia in colon cancer. Br J Cancer 2009; 101(10):1749–1757.

    Article  PubMed  CAS  Google Scholar 

  24. Guilmeau S, Flandez M, Mariadason JM et al. Heterogeneity of Jagged1 expression in human and mouse intestinal tumors: implications for targeting Notch signaling. Oncogene 2010; 29(7):992–1002.

    Article  PubMed  CAS  Google Scholar 

  25. Rodilla V, Villanueva A, Obrador-Hevia A et al. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA 2009; 106(15):6315–6320.

    Article  PubMed  CAS  Google Scholar 

  26. Shroyer NF, Helmrath MA, Wang VY et al. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 2007; 132(7):2478–2488.

    Article  PubMed  CAS  Google Scholar 

  27. Milano J, McKay J, Dagenais C et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 2004; 82(1):341–358.

    Article  PubMed  CAS  Google Scholar 

  28. Wong GT, Manfra D, Poulet FM et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004; 279(13):12876–12882.

    Article  PubMed  CAS  Google Scholar 

  29. Searfoss GH, Jordan WH, Calligaro DO et al. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma-secretase inhibitor. J Biol Chem 2003; 278(46):46107–46116.

    Article  PubMed  CAS  Google Scholar 

  30. Fre S, Huyghe M, Mourikis P et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005; 435(7044):964–968.

    Article  PubMed  CAS  Google Scholar 

  31. Riccio O, van Gijn ME, Bezdek AC et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 2008; 9(4):377–383.

    Article  PubMed  CAS  Google Scholar 

  32. Fre S, Pallavi SK, Huyghe M et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci USA 2009; 106(15):6309–6314.

    Article  PubMed  CAS  Google Scholar 

  33. Ridgway J, Zhang G, Wu Y et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006; 444(7122):1083–1087.

    Article  PubMed  CAS  Google Scholar 

  34. Okamoto R, Tsuchiya K, Nemoto Y et al. Requirement of Notch activation during regeneration of the intestinal epithelia. Am J Physiol Gastrointest Liver Physiol 2009; 296(1):G23–35.

    Article  PubMed  CAS  Google Scholar 

  35. Bardin AJ, Perdigoto CN, Southall TD et al. Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 2010; 137(5):705–714.

    Article  PubMed  CAS  Google Scholar 

  36. Micchelli CA, Perrimon N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 2006; 439(7075):475–479.

    Article  PubMed  CAS  Google Scholar 

  37. Ohlstein B, Spradling A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 2006; 439(7075):470–474.

    Article  PubMed  CAS  Google Scholar 

  38. Fuss B, Hoch M. Notch signaling controls cell fate specification along the dorsoventral axis of the Drosophila gut. Curr Biol 2002; 12(3):171–179.

    Article  PubMed  CAS  Google Scholar 

  39. Casali A, Batlle E. Intestinal stem cells in mammals and Drosophila. Cell Stem Cell 2009; 4(2):124–127.

    Article  PubMed  CAS  Google Scholar 

  40. O’Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 2004; 96(19):1420–1425.

    Article  PubMed  Google Scholar 

  41. Veenendaal LM, Kranenburg O, Smakman N et al. Differential Notch and TGFbeta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol 2008; 30(1):1–11.

    PubMed  CAS  Google Scholar 

  42. Fernandez-Majada V, Aguilera C, Villanueva A et al. Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci USA 2007; 104(1):276–281.

    Article  PubMed  CAS  Google Scholar 

  43. Reedijk M, Odorcic S, Zhang H et al. Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol 2008; 33(6):1223–1229.

    PubMed  Google Scholar 

  44. Sikandar SS, Pate KT, Anderson S et al. NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res 2010; 70(4):1469–1478.

    Article  PubMed  CAS  Google Scholar 

  45. Bossuyt W, Kazanjian A, De Geest N et al. Atonal homolog 1 is a tumor suppressor gene. PLoS Biol 2009; 7(2):e39.

    Article  PubMed  Google Scholar 

  46. van de Wetering M, Sancho E, Verweij C et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111(2):241–250.

    Article  PubMed  Google Scholar 

  47. Ghaleb AM, Aggarwal G, Bialkowska AB et al. Notch inhibits expression of the Kruppel-like factor 4 tumor suppressor in the intestinal epithelium. Mol Cancer Res 2008; 6(12):1920–1927.

    Article  PubMed  CAS  Google Scholar 

  48. Akiyoshi T, Nakamura M, Yanai K et al. Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. Gastroenterology 2008; 134(1):131–144.

    Article  PubMed  CAS  Google Scholar 

  49. Katz JP, Perreault N, Goldstein BG et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 2002; 129(11):2619–2628.

    PubMed  CAS  Google Scholar 

  50. Guilmeau S, Flandez M, Bancroft L et al. Intestinal deletion of Pofut1 in the mouse inactivates notch signaling and causes enterocolitis. Gastroenterology 2008; 135(3):849–860, 860 e841–846.

    Article  PubMed  CAS  Google Scholar 

  51. Qiao L, Wong BC. Role of Notch signaling in colorectal cancer. Carcinogenesis 2009; 30(12):1979–1986.

    Article  PubMed  CAS  Google Scholar 

  52. Clarke AR. Wnt signalling in the mouse intestine. Oncogene 2006; 25(57):7512–7521.

    Article  PubMed  CAS  Google Scholar 

  53. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434(7035):843–850.

    Article  PubMed  CAS  Google Scholar 

  54. Moon RT, Kohn AD, De Ferrari GV et al. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 2004; 5(9):691–701.

    Article  PubMed  CAS  Google Scholar 

  55. Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14(15):1837–1851.

    PubMed  CAS  Google Scholar 

  56. Estrach S, Ambler CA, Lo Celso C et al. Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 2006; 133(22):4427–4438.

    Article  PubMed  CAS  Google Scholar 

  57. Katoh M. Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 2006; 17(4):681–685.

    PubMed  CAS  Google Scholar 

  58. Alves-Guerra MC, Ronchini C, Capobianco AJ. Mastermind-like 1 Is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 2007; 67(18):8690–8698.

    Article  PubMed  CAS  Google Scholar 

  59. Aragaki M, Tsuchiya K, Okamoto R et al. Proteasomal degradation of Atoh1 by aberrant Wnt signaling maintains the undifferentiated state of colon cancer. Biochem Biophys Res Commun 2008; 368(4):923–929.

    Article  PubMed  CAS  Google Scholar 

  60. Tsuchiya K, Nakamura T, Okamoto R et al. Reciprocal targeting of Hath1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancer. Gastroenterology 2007; 132(1):208–220.

    Article  PubMed  CAS  Google Scholar 

  61. Sagiv E, Rozovski U, Kazanov D et al. Gene expression analysis proposes alternative pathways for the mechanism by which celecoxib selectively inhibits the growth of transformed but not normal enterocytes. Clin Cancer Res 2007; 13(22 Pt 1):6807–6815.

    Article  PubMed  CAS  Google Scholar 

  62. Meng RD, Shelton CC, Li YM et al Gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res 2009; 69(2):573–582.

    Article  PubMed  CAS  Google Scholar 

  63. Menke V, van Es JH, de Lau W et al. Conversion of metaplastic Barrett’s epithelium into postmitotic goblet cells by gamma-secretase inhibition. Dis Model Mech 2010;3(1–2):104–110.

    Article  PubMed  CAS  Google Scholar 

  64. Graziani I, Eliasz S, De Marco MA et al. Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res 2008; 68(23):9678–9685.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Guilmeau, S. (2012). Notch Signaling and Intestinal Cancer. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_21

Download citation

Publish with us

Policies and ethics