Notch Signaling and Intestinal Cancer

  • Sandra Guilmeau
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 727)


In recent years, a substantial body of evidence has accumulated to support the notion that signaling pathways known to be important during embryonic development play important roles in regulating self-renewing tissues and tumorigenesis. In this context, Notch signaling is now recognized as essential for maintaining progenitor/ stem cell population as well as for regulating cell lineage differentiation in the normal intestinal mucosa. Many studies have also showed that Notch signaling is constitutively activated in colorectal cancer and its inhibition is able to suppress the cell growth and sensitize cancer cells to treatment-induced apoptosis. Therefore, discovery of the role of γ-secretase in the Notch signaling activation has prompted intensive research on the potential use of γ-secretase inhibitors in the treatment of colon cancer. This chapter reviews the current understanding and research findings of the role of Notch signaling in intestinal homeostasis and colorectal cancer and discusses the possible Notch targeting approaches as novel molecular therapy for intestinal cancer.


Colorectal Cancer Notch Signaling Malignant Mesothelioma Notch Signaling Pathway Notch Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McLin VA, Henning SJ, Jamrich M. The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 2009; 136(7):2074–2091.PubMedCrossRefGoogle Scholar
  2. 2.
    Roberts DJ. Molecular mechanisms of development of the gastrointestinal tract. Dev Dyn 2000; 219(2):109–120.PubMedCrossRefGoogle Scholar
  3. 3.
    Scoville DH, Sato T, He XC et al. Current view: intestinal stem cells and signaling. Gastroenterology 2008; 134(3):849–864.PubMedCrossRefGoogle Scholar
  4. 4.
    Barker N, van Es JH, Kuipers J et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449(7165):1003–1007.PubMedCrossRefGoogle Scholar
  5. 5.
    Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008; 40(7):915–920.PubMedCrossRefGoogle Scholar
  6. 6.
    Sato T, Vries RG, Snippert HJ et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459(7244):262–265.PubMedCrossRefGoogle Scholar
  7. 7.
    Ootani A, Li X, Sangiorgi E et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 2009; 15(6):701–706.PubMedCrossRefGoogle Scholar
  8. 8.
    Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol 2004; 20:695–723.PubMedCrossRefGoogle Scholar
  9. 9.
    Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science 2005; 307(5717):1904–1909.PubMedCrossRefGoogle Scholar
  10. 10.
    Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137(2):216–233.PubMedCrossRefGoogle Scholar
  11. 11.
    Jarriault S, Brou C, Logeat F et al. Signalling downstream of activated mammalian Notch. Nature 1995; 377(6547):355–358.PubMedCrossRefGoogle Scholar
  12. 12.
    Zheng H, Pritchard DM, Yang X et al. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2009; 2966(3):G490–498.CrossRefGoogle Scholar
  13. 13.
    Yang Q, Bermingham NA, Finegold MJ et al. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001; 294(5549):2155–2158.CrossRefGoogle Scholar
  14. 14.
    Jensen J, Pedersen EE, Galante P et al. Control of endodermal endocrine development by Hes-1. Nat Genet 2000; 24(1):36–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Schroder N, Gossler A. Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns 2002; 2(3–4):247–250.PubMedCrossRefGoogle Scholar
  16. 16.
    Sander GR, Powell BC. Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem 2004; 52(4):509–516.PubMedCrossRefGoogle Scholar
  17. 17.
    Akiyama J, Okamoto R, Iwasaki M et al. Delta-like 1 expression promotes goblet cell differentiation in Notch-inactivated human colonic epithelial cells. Biochem Biophys Res Commun 2010; 393(4):662–667.PubMedCrossRefGoogle Scholar
  18. 18.
    van Es JH, van Gijn ME, Riccio O et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005; 435(7044):959–963.PubMedCrossRefGoogle Scholar
  19. 19.
    Vooijs M, Ong CT, Hadland B et al. Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development 2007; 134(3):535–544.PubMedCrossRefGoogle Scholar
  20. 20.
    Leow CC, Romero MS, Ross S et al. Hath1, down-regulated in colon adenocarcinomas, inhibits proliferation and tumorigenesis of colon cancer cells. Cancer Res 2004; 64(17):6050–6057.PubMedCrossRefGoogle Scholar
  21. 21.
    Crosnier C, Vargesson N, Gschmeissner S et al. Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 2005; 132(5):1093–1104.PubMedCrossRefGoogle Scholar
  22. 22.
    Gregorieff A, Stange DE, Kujala P et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology 2009; 137(4):1333–1345 e1331-1333.PubMedCrossRefGoogle Scholar
  23. 23.
    Jubb AM, Turley H, Moeller HC et al. Expression of delta-like ligand 4 (Dll4) and markers of hypoxia in colon cancer. Br J Cancer 2009; 101(10):1749–1757.PubMedCrossRefGoogle Scholar
  24. 24.
    Guilmeau S, Flandez M, Mariadason JM et al. Heterogeneity of Jagged1 expression in human and mouse intestinal tumors: implications for targeting Notch signaling. Oncogene 2010; 29(7):992–1002.PubMedCrossRefGoogle Scholar
  25. 25.
    Rodilla V, Villanueva A, Obrador-Hevia A et al. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA 2009; 106(15):6315–6320.PubMedCrossRefGoogle Scholar
  26. 26.
    Shroyer NF, Helmrath MA, Wang VY et al. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 2007; 132(7):2478–2488.PubMedCrossRefGoogle Scholar
  27. 27.
    Milano J, McKay J, Dagenais C et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 2004; 82(1):341–358.PubMedCrossRefGoogle Scholar
  28. 28.
    Wong GT, Manfra D, Poulet FM et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004; 279(13):12876–12882.PubMedCrossRefGoogle Scholar
  29. 29.
    Searfoss GH, Jordan WH, Calligaro DO et al. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma-secretase inhibitor. J Biol Chem 2003; 278(46):46107–46116.PubMedCrossRefGoogle Scholar
  30. 30.
    Fre S, Huyghe M, Mourikis P et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005; 435(7044):964–968.PubMedCrossRefGoogle Scholar
  31. 31.
    Riccio O, van Gijn ME, Bezdek AC et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 2008; 9(4):377–383.PubMedCrossRefGoogle Scholar
  32. 32.
    Fre S, Pallavi SK, Huyghe M et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci USA 2009; 106(15):6309–6314.PubMedCrossRefGoogle Scholar
  33. 33.
    Ridgway J, Zhang G, Wu Y et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006; 444(7122):1083–1087.PubMedCrossRefGoogle Scholar
  34. 34.
    Okamoto R, Tsuchiya K, Nemoto Y et al. Requirement of Notch activation during regeneration of the intestinal epithelia. Am J Physiol Gastrointest Liver Physiol 2009; 296(1):G23–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Bardin AJ, Perdigoto CN, Southall TD et al. Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 2010; 137(5):705–714.PubMedCrossRefGoogle Scholar
  36. 36.
    Micchelli CA, Perrimon N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 2006; 439(7075):475–479.PubMedCrossRefGoogle Scholar
  37. 37.
    Ohlstein B, Spradling A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 2006; 439(7075):470–474.PubMedCrossRefGoogle Scholar
  38. 38.
    Fuss B, Hoch M. Notch signaling controls cell fate specification along the dorsoventral axis of the Drosophila gut. Curr Biol 2002; 12(3):171–179.PubMedCrossRefGoogle Scholar
  39. 39.
    Casali A, Batlle E. Intestinal stem cells in mammals and Drosophila. Cell Stem Cell 2009; 4(2):124–127.PubMedCrossRefGoogle Scholar
  40. 40.
    O’Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 2004; 96(19):1420–1425.PubMedCrossRefGoogle Scholar
  41. 41.
    Veenendaal LM, Kranenburg O, Smakman N et al. Differential Notch and TGFbeta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol 2008; 30(1):1–11.PubMedGoogle Scholar
  42. 42.
    Fernandez-Majada V, Aguilera C, Villanueva A et al. Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci USA 2007; 104(1):276–281.PubMedCrossRefGoogle Scholar
  43. 43.
    Reedijk M, Odorcic S, Zhang H et al. Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol 2008; 33(6):1223–1229.PubMedGoogle Scholar
  44. 44.
    Sikandar SS, Pate KT, Anderson S et al. NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res 2010; 70(4):1469–1478.PubMedCrossRefGoogle Scholar
  45. 45.
    Bossuyt W, Kazanjian A, De Geest N et al. Atonal homolog 1 is a tumor suppressor gene. PLoS Biol 2009; 7(2):e39.PubMedCrossRefGoogle Scholar
  46. 46.
    van de Wetering M, Sancho E, Verweij C et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111(2):241–250.PubMedCrossRefGoogle Scholar
  47. 47.
    Ghaleb AM, Aggarwal G, Bialkowska AB et al. Notch inhibits expression of the Kruppel-like factor 4 tumor suppressor in the intestinal epithelium. Mol Cancer Res 2008; 6(12):1920–1927.PubMedCrossRefGoogle Scholar
  48. 48.
    Akiyoshi T, Nakamura M, Yanai K et al. Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. Gastroenterology 2008; 134(1):131–144.PubMedCrossRefGoogle Scholar
  49. 49.
    Katz JP, Perreault N, Goldstein BG et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 2002; 129(11):2619–2628.PubMedGoogle Scholar
  50. 50.
    Guilmeau S, Flandez M, Bancroft L et al. Intestinal deletion of Pofut1 in the mouse inactivates notch signaling and causes enterocolitis. Gastroenterology 2008; 135(3):849–860, 860 e841–846.PubMedCrossRefGoogle Scholar
  51. 51.
    Qiao L, Wong BC. Role of Notch signaling in colorectal cancer. Carcinogenesis 2009; 30(12):1979–1986.PubMedCrossRefGoogle Scholar
  52. 52.
    Clarke AR. Wnt signalling in the mouse intestine. Oncogene 2006; 25(57):7512–7521.PubMedCrossRefGoogle Scholar
  53. 53.
    Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434(7035):843–850.PubMedCrossRefGoogle Scholar
  54. 54.
    Moon RT, Kohn AD, De Ferrari GV et al. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 2004; 5(9):691–701.PubMedCrossRefGoogle Scholar
  55. 55.
    Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14(15):1837–1851.PubMedGoogle Scholar
  56. 56.
    Estrach S, Ambler CA, Lo Celso C et al. Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 2006; 133(22):4427–4438.PubMedCrossRefGoogle Scholar
  57. 57.
    Katoh M. Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 2006; 17(4):681–685.PubMedGoogle Scholar
  58. 58.
    Alves-Guerra MC, Ronchini C, Capobianco AJ. Mastermind-like 1 Is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 2007; 67(18):8690–8698.PubMedCrossRefGoogle Scholar
  59. 59.
    Aragaki M, Tsuchiya K, Okamoto R et al. Proteasomal degradation of Atoh1 by aberrant Wnt signaling maintains the undifferentiated state of colon cancer. Biochem Biophys Res Commun 2008; 368(4):923–929.PubMedCrossRefGoogle Scholar
  60. 60.
    Tsuchiya K, Nakamura T, Okamoto R et al. Reciprocal targeting of Hath1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancer. Gastroenterology 2007; 132(1):208–220.PubMedCrossRefGoogle Scholar
  61. 61.
    Sagiv E, Rozovski U, Kazanov D et al. Gene expression analysis proposes alternative pathways for the mechanism by which celecoxib selectively inhibits the growth of transformed but not normal enterocytes. Clin Cancer Res 2007; 13(22 Pt 1):6807–6815.PubMedCrossRefGoogle Scholar
  62. 62.
    Meng RD, Shelton CC, Li YM et al Gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res 2009; 69(2):573–582.PubMedCrossRefGoogle Scholar
  63. 63.
    Menke V, van Es JH, de Lau W et al. Conversion of metaplastic Barrett’s epithelium into postmitotic goblet cells by gamma-secretase inhibition. Dis Model Mech 2010;3(1–2):104–110.PubMedCrossRefGoogle Scholar
  64. 64.
    Graziani I, Eliasz S, De Marco MA et al. Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res 2008; 68(23):9678–9685.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Sandra Guilmeau
    • 1
  1. 1.Département d’Endocrinologie, Métabolisme et Cancer Institut CochinUniversité Paris DescartesParisFrance

Personalised recommendations