Skip to main content

Notch Signaling and the Developing Skin Epidermis

  • Chapter
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

The innermost (basal) layer of the skin epidermis consists of proliferative progenitors which give rise to multiple differentiating layers providing a barrier that keeps the inside of the body moist and protects the body from outside assaults by physical, environmental and biological factors. The epidermis is maintained throughout life through the proliferation of stem cells and differentiation of their progeny. Notch signaling pathway is a highly conserved molecular network that plays an essential role in cell fate determination during embryogenesis and also in postnatal life. Data from ongoing studies indicate that Notch signaling orchestrates the process of epidermal differentiation and proliferation through the sequential activity of different Notch ligands, receptors and downstream pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Owens DM, Watt FM. Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 2003; 255:238–248.

    Google Scholar 

  2. Elias PM. The statun corneum revisited. J Dermatol 1996; 23:756–768.

    PubMed  CAS  Google Scholar 

  3. Nemes Z, Steinert PM. Bricks and mortar of the epidermal barrier. Exp Mol Med 1999; 31:5–19.

    PubMed  CAS  Google Scholar 

  4. Lajtha LG. Stem cell concepts. Differentiation 1979; 14:23–34.

    Article  PubMed  CAS  Google Scholar 

  5. Watt FM, Lo Celso C, Silva-Vargas V. Epidermal stem cells: an update. Curr Opin Genet Dev 2006; 16:518–524.

    Article  PubMed  CAS  Google Scholar 

  6. Clayton E, Doupe DP, Klein AM et al. A single type of progenitor cell maintains normal epidermis. Nature 2007; 446:185–189.

    Article  PubMed  CAS  Google Scholar 

  7. Ghazizadeh S, Taichman LB. Multiple ckasses of stem cells in the cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J 2001; 20:1215–1222.

    Article  PubMed  CAS  Google Scholar 

  8. Levy V, Lindon C, Harfe BD et al. Distinct stem cell populations regenerate the follicke and interfollicular epidermis. Dev Cell 2005; 9:855–861.

    Article  PubMed  CAS  Google Scholar 

  9. Fuchs E, Tumbar T, Guasch G. Socializing with neighbors: stem cells and their niche. Cell 2004; 116:769–778.

    Article  PubMed  CAS  Google Scholar 

  10. Senoo M, Pinto F, Crum CP et al. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007; 129:523–536.

    Article  PubMed  CAS  Google Scholar 

  11. Watt FM, Frye M, Benitah SA. MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer 2008; 8:234–242.

    Article  PubMed  CAS  Google Scholar 

  12. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284:770–76.

    Article  PubMed  CAS  Google Scholar 

  13. Jeffries S, Capobianco AJ. Neoplastic transformation by Notch requires nuclear localization. Mol Cell Biol 2000; 20:3928–3941.

    Article  PubMed  CAS  Google Scholar 

  14. Lai EC. Notch signaling: control of cell communication and cell fate. Development 2004; 131:965–73.

    Article  PubMed  CAS  Google Scholar 

  15. Robbins J, Blondel BJ, Gallahan D et al. Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J Virol 1992; 66:2594–2599.

    PubMed  CAS  Google Scholar 

  16. del Amo FF, Gendrom-Maguire M, Swiatek PJ et al. Cloning, analysis and chromosomal localization of Notch1, a mouse homolog of Drosophila Notch. Genomics 1993; 15:259–264.

    Article  PubMed  Google Scholar 

  17. Lardelli M, Williams R, Lendahl U. Notch-related genes in animal development. Int J Dev Biol 1995; 39:769–780.

    PubMed  CAS  Google Scholar 

  18. Lindsell CE, Shawber CJ, Boulter J et al. Jagged: a mammalian ligand that activates Notch1. Cell 1995; 80:909–917.

    Article  PubMed  CAS  Google Scholar 

  19. Gray GE, Mann RS, Mitsiadis E et al. Human ligands of the Notch receptor. Am J Pathol 1999; 154:785–794.

    Article  PubMed  CAS  Google Scholar 

  20. Shutter JR, Scully S, Fan W et al. D114, a novel Notch ligand expressed in arterial endothelium. Genes Dev 2000; 14:1313–1318.

    PubMed  CAS  Google Scholar 

  21. Schroeter EH, Kisslinger JA, Kopan R. Notch1 signaling requires ligand-induced proteolytic release of intracellular domain. Nature 1998; 393:382–386.

    Article  PubMed  CAS  Google Scholar 

  22. Levitan D, Lee J, Song L et al. PS1 N-and C-terminal fragments form a complex that functions in APP processing and Notch signaling. Proc Natl Acad Sci USA 2001; 98:12186–121190.

    Article  PubMed  CAS  Google Scholar 

  23. Kageyama R, Ohtsuka T, Kobayashi T. The Hes family: repressors and oscillators that orchestrate embryogenesis. Development 2007; 134:1243–1251.

    Article  PubMed  CAS  Google Scholar 

  24. Hurlbut GD, Kankel MW, Lake RJ et al. Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 2007; 19:166–175.

    Article  PubMed  CAS  Google Scholar 

  25. Powell BC, Passmore EA, Nesci A et al. The Notch signaling pathway in hair growth. Mech Dev 1998; 78:189–192.

    Article  PubMed  CAS  Google Scholar 

  26. Nickoloff BJ, Qin JZ, Chaturvedi V et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ 2002; 9:842–855.

    Article  PubMed  CAS  Google Scholar 

  27. Pan Y, Lin MH, Tian X et al. γ-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell 2004; 7:731–743.

    Article  PubMed  CAS  Google Scholar 

  28. Lowell S, Jones P, Le Roux I et al. Stimulation of human epidermal differentiation by delta-Notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000; 10:491–500.

    Article  PubMed  CAS  Google Scholar 

  29. Thélu J, Rossio P, Favier B. Notch signaling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol 2002; 2:7.

    Article  PubMed  Google Scholar 

  30. Blanpain C, Lowry WE, Pasolli HA et al. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 2006; 20:3022–3035.

    Article  PubMed  CAS  Google Scholar 

  31. Estrach S, Ambler CA, Lo Celso C et al. Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 2006; 133:4427–4438.

    Article  PubMed  CAS  Google Scholar 

  32. Moriyama M, Osawa M, Mak SS et al. Notch signaling via Hes1 trascription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 2006; 173:333–339.

    Article  PubMed  CAS  Google Scholar 

  33. Fuchs E. Epidermal differentiation: the bare essentials. J Cell Biol 1990; 111:2807–14.

    Article  PubMed  CAS  Google Scholar 

  34. Missero C, Di Cunto F, Kiyokawa H et al. The absence of p21CIP1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev 1996; 10:3065–3075.

    Article  PubMed  CAS  Google Scholar 

  35. Rangarajan A, Talora C, Okuyama R et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20:3427–3436.

    Article  PubMed  CAS  Google Scholar 

  36. Mammucari C, Tommasi di Vignano A, Sharov AA et al. Integration of Notch1 and calcineurin/NFAT signalling pathways in keratinocyte growth and differentiation control. Dev Cell 2005; 8:665–676.

    Article  PubMed  CAS  Google Scholar 

  37. Fuchs E. Scratching the surface of skin development. Nature 2007; 445:834–842.

    Article  PubMed  CAS  Google Scholar 

  38. Watt FM, Estrach S, Ambler CA. Epidermal Notch signaling: differentiation, cancer and adhesion. Curr Opin Cell Biol 2008; 20:171–179.

    Article  PubMed  CAS  Google Scholar 

  39. Hodkinson PS, Elliot PA, Lad Y et al. Mammalian NOTCH 1activates beta1 integrines via the small GTPase R-Ras. J Biol Chem 2007; 282:28991–29001.

    Article  PubMed  CAS  Google Scholar 

  40. Estrach S, Cordes R, Hozumi K et al. Role of the Notch ligand Delta1 in embryonic and adult mouse epidermis. J Invest Dermatol 2007.

    Google Scholar 

  41. Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J 2002; 21:3919–3926.

    Article  PubMed  CAS  Google Scholar 

  42. Estrach S, Legg J, Watt FM. Syntenin mediates Delta1-induced cohesiveness of epidermal stem cells in culture. J Cell Sci 2007; 120:2944–2952.

    Article  PubMed  CAS  Google Scholar 

  43. Julich D, Geisler R, Holley SA. Integrinalpha5 and delta/notch signaling have complementary spatiotemporal requirements during zebrafish somitigenesis. Dev Cell 2005; 8:575–586.

    Article  PubMed  Google Scholar 

  44. Oh ES, Couchman JR. Syndecans-2 and-4; close cousins but not identical twins. Mol Cells 2004; 17:181–187.

    PubMed  CAS  Google Scholar 

  45. Benitah SA, Frye M, Glogauer M et al. Stem cell depletion through epidermal deletion of Rac1. Science 2005; 309:933–935.

    Article  PubMed  Google Scholar 

  46. Dotto GP, Cotsarelis G. Developmental biology. Rac1 up for epidermal stem cells. Science 2005; 309:890–891.

    Article  PubMed  CAS  Google Scholar 

  47. Wu X, Quondamatteo F, Lefever T et al. Cdc42 controls progenitor cell differentiation and β-catenin turnover in skin. Genes and Dev 2006; 20:571–585.

    Article  PubMed  CAS  Google Scholar 

  48. Lefort K, Mandinova A, Ostano P et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 2007; 21:562–577.

    Article  PubMed  CAS  Google Scholar 

  49. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet 2002; 3:199–209.

    Article  PubMed  CAS  Google Scholar 

  50. Dlugosz AA, Yuspa SH. Coordinate changes in gene expression which mark the spinous to granular cell transition in epidermis are regulated by protein kinase. J Cell Biol 1993; 120:217–225.

    Article  PubMed  CAS  Google Scholar 

  51. Segre JA. Epidermal barrier formation and recovery in skin disorders. J Clin Invest 2006; 116:1150–1158.

    Article  PubMed  CAS  Google Scholar 

  52. Moriyama M, Durham AD, Moriyama H et al. Multiple roles of Notch signaling in the regulation of epidermal developement. Dev Cell 2008; 14:594–604.

    Article  PubMed  CAS  Google Scholar 

  53. Di Cunto F, Topley G, Calautti E et al. Inhibitory function of p21Cip1/WAF1 in differentiation of primary mouse keratinocytes independent of cell cycle control. Science 1998; 280:1069–1072.

    Article  PubMed  Google Scholar 

  54. Okuyama R, Nguyen BC, Talora C et al. High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev Cell 2004; 6:551–562.

    Article  PubMed  CAS  Google Scholar 

  55. Nicolas M, Wolfer A, Raj K et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33:416–21.

    Article  PubMed  CAS  Google Scholar 

  56. Proweller A, Tu L, Lepore JJ et al. Impaired Notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 2006; 66:7438–7444.

    Article  PubMed  CAS  Google Scholar 

  57. Uyttendaele H, Panteleyev AA, de Berker D et al. Activation of Notch1 in the hair follicle leads to cell-fate switch and Mohawk alopecia. Differentiation 2004; 72:396–409.

    Article  PubMed  CAS  Google Scholar 

  58. Krebs LT, Xue Y, Norton CR et al. Notch signalling is essential for vascular morphogenesis in mice. Genes Dev 2000; 14:1343–1352.

    PubMed  CAS  Google Scholar 

  59. Brookner R, Hozumi K, Lewis J. Notch ligands with contrasting functions:Jagged1 and Delta1 in the mouse inner ear. Development 2006; 133:1227–1286.

    Google Scholar 

  60. Panelos J, Massi D. Emerging role of notch signaling in epidermal differentiation and skin cancer. Cancer Biol Ther 2009; 8:1986–93.

    Article  PubMed  CAS  Google Scholar 

  61. Vauclair S, Majo F. Durham AD et al corneal epithelial cell fate is maintained during repair by Notch1 signaling via the regulation of vitamin A metabolism. Dev Cell 2007; 13:242–253.

    Article  PubMed  CAS  Google Scholar 

  62. Ambler CA, Watt FM. Expression of Notch pathway genes in mammalian epidermis and modulation by β-catenin. Dev Dyn 2007; 236:1595–1601.

    Article  PubMed  CAS  Google Scholar 

  63. Katoh M, Katoh M. Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 2006; 17:681–685.

    PubMed  CAS  Google Scholar 

  64. Devgan V, Mammucari C, Millar SE et al. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev 2005; 19:1485–1495.

    Article  PubMed  CAS  Google Scholar 

  65. Hayward P, Brennan K, Sanders P et al. Notch modulates Wnt signalling by associating with Armadillo/ β-catenin and regulating its transcriptional activity. Development 2005; 132:1819–1830.

    Article  PubMed  CAS  Google Scholar 

  66. Kitaura H, Shinshi M, Uchikoshi Y et al. Reciprocal regulation via protein-protein interaction between c-myc and p21(cip1/waf1/sdi1) in DNAreplication and transcription. J Biol Chem 2000; 275:10477–10483.

    Article  PubMed  CAS  Google Scholar 

  67. He TC, Sparks AB, Rago S et al. Identification of c-Myc as a target of the APC pathway. Science 1998; 281:1509–1512.

    Article  PubMed  CAS  Google Scholar 

  68. Kaufman CK, Fuchs E. It’s got you covered:NF-κB in the epidermis. J Cell Biol 2000; 149:999–1004.

    Article  PubMed  CAS  Google Scholar 

  69. Rivier M, Castiel I, Aihaud G et al. Differentiated expression of peroxisome proliferator-activated receptor subtypes during the differentiation of human keratinocytes. J Invest Dermatol 1998; 111:1116–1121.

    Article  PubMed  CAS  Google Scholar 

  70. Guan E, Wang J, Laborda J et al. T-cell leukemia-associated Notch homologue has I κB-like activity and physically interacts with nuclear factor-κB proteins in T-cells. J Exp Med 1996; 183:2025–2032.

    Article  PubMed  CAS  Google Scholar 

  71. Mills AA, Zheng B, Wang XJ et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398:708–711.

    Article  PubMed  CAS  Google Scholar 

  72. Koster MI, Kim S, Mills AA et al. P63 is the molecular switch for initiation of an epithelial stratification program. Genes and Dev 2004; 18:126–131.

    Article  PubMed  CAS  Google Scholar 

  73. Dotto GP. Notch tumor suppressor function. Oncogene 2008; 27:5115–5123.

    Article  PubMed  CAS  Google Scholar 

  74. Keyes WM, Wu Y, Vogel H et al. P63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes and Dev 2005; 19:1986–1999.

    Article  PubMed  CAS  Google Scholar 

  75. Nguyen BC, Lefort K, Mandinova A et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 2006; 20:1028–1040.

    Article  PubMed  CAS  Google Scholar 

  76. Dai X, Segre JA. Transcriptional control of epidermal specification and differentiation. Curr Opin Genet Dev 2004; 14:485–491.

    Article  PubMed  CAS  Google Scholar 

  77. Nagarajan P, Romano RA, Sinha S. Transcriptional control of the differentiation program of interfollicular epidermal keratinocytes. Crit Rev Eukaryot Gene Expr 2008; 18:57–79.

    PubMed  CAS  Google Scholar 

  78. Kerber B, Monge I, Mueller M et al. The AP-2 transcription factor is required for joint formation and cell survival in Drosophila leg development. Development 2001; 128:1231–1238.

    PubMed  CAS  Google Scholar 

  79. Wang X, Pasolli HA, Williams T et al. AP-2factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J Cell Biol 2008; 183:37–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Massi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Massi, D., Panelos, J. (2012). Notch Signaling and the Developing Skin Epidermis. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_10

Download citation

Publish with us

Policies and ethics