Skip to main content

FGF23, Klotho and Vitamin D Interactions:

What Have We Learned from In Vivo Mouse Genetics Studies?

  • Chapter
Book cover Endocrine FGFs and Klothos

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 728))

Abstract

The molecular interactions of fibroblast growth factor 23 (FGF23), klotho and vitamin D coordinate to regulate the delicate phosphate levels of the body. Vitamin D can induce both FGF23 and klotho synthesis to influence renal phosphate balance. In the presence of klotho, FGF23 protein gains bioactivity to influence systemic phosphate homeostasis. Experimental studies have convincingly shown that in the absence of klotho, FGF23 is unable to regulate in vivo phosphate homeostasis. Furthermore, genetic inactivation of FGF23, klotho or both of the genes have resulted in markedly increased renal expression of 1-alpha hydroxylase [1α(OH)ase] and concomitant elevated serum levels of 1,25, dihydroxyvitamin D [1,25(OH)2D] in the mutant mice. Vitamin D can induce the expression of both FGF23 and klotho while, FGF23 can suppress renal expression of 1α(OH)ase to reduce 1,25(OH)2D activity. In this brief chapter, I will summarize the possible in vivo interactions of FGF23, klotho and vitamin D, in the light of recent mouse genetics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rastegar A. New concepts in pathogenesis of renal hypophosphatemic syndromes. Iran J Kidney Dis 2009;3:1–6.

    PubMed  Google Scholar 

  2. Gaasbeek A, Meinders AE. Hypophosphatemia: an update on its etiology and treatment. Am J Med 2005; 118:1094–101.

    Article  PubMed  CAS  Google Scholar 

  3. Berndt T, Kumar R. Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol 2007; 69:341–59.

    Article  PubMed  CAS  Google Scholar 

  4. Imel EA, Econs MJ. Fibroblast growth factor 23: roles in health and disease. J Am Soc Nephrol 2005; 16:2565–75.

    Article  PubMed  CAS  Google Scholar 

  5. Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 2008; 118:3820–8.

    Article  PubMed  CAS  Google Scholar 

  6. Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: A molecular perspective. Kidney Int 2006; 70:1548–59.

    Article  PubMed  CAS  Google Scholar 

  7. Nabeshima Y, Imura H. alpha-Klotho: a regulator that integrates calcium homeostasis. Am J Nephrol 2008; 28:455–64.

    Article  PubMed  CAS  Google Scholar 

  8. Razzaque MS. Klotho and Na+,K+-ATPase activity: solving the calcium metabolism dilemma? Nephrol Dial Transplant 2008; 23:459–61.

    Article  PubMed  Google Scholar 

  9. Imura A, Tsuji Y, Murata M et al. alpha-Klotho as a regulator of calcium homeostasis. Science 2007; 316:1615–8.

    Article  PubMed  CAS  Google Scholar 

  10. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 2000; 277:494–8.

    Article  PubMed  CAS  Google Scholar 

  11. ADHR_Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. The ADHR Consortium. Nat Genet 2000; 26:345–8.

    Article  Google Scholar 

  12. Shimada T, Hasegawa H, Yamazaki Y et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004; 19:429–35.

    Article  PubMed  CAS  Google Scholar 

  13. Larsson T, Marsell R, Schipani E et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia and disturbed phosphate homeostasis. Endocrinology 2004; 145:3087–94.

    Article  PubMed  CAS  Google Scholar 

  14. DeLuca S, Sitara D, Kang K et al. Amelioration of the premature aging-like features of Fgf-23 knockout mice by genetically restoring the systemic actions of FGF-23. J Pathol 2008; 216:345–355.

    Article  PubMed  CAS  Google Scholar 

  15. Benet-Pages A, Orlik P, Strom TM et al. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14:385–90.

    Article  PubMed  CAS  Google Scholar 

  16. Imanishi Y, Inaba M, Nakatsuka K et al. FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 2004; 65:1943–6.

    Article  PubMed  CAS  Google Scholar 

  17. Nishi H, Nii-Kono T, Nakanishi S et al. Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism. Nephron Clin Pract 2005; 101:c94–9.

    Article  PubMed  CAS  Google Scholar 

  18. Saito H, Maeda A, Ohtomo S et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 2005; 280:2543–9.

    Article  PubMed  CAS  Google Scholar 

  19. Shigematsu T, Kazama JJ, Yamashita T et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis 2004; 44:250–6.

    Article  PubMed  CAS  Google Scholar 

  20. Fliser D, Kollerits B, Neyer U et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 2007; 18:2600–8.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu HJ, Wu MS. Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am J Med Sci 2009; 337:116–22.

    Article  PubMed  Google Scholar 

  22. Gutierrez OM, Januzzi JL, Isakova T et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009; 119:2545–52.

    Article  PubMed  CAS  Google Scholar 

  23. Kuro-o M. Klotho in chronic kidney disease—what’s new? Nephrol Dial Transplant 2009; 24:1705–8.

    Article  PubMed  CAS  Google Scholar 

  24. Razzaque MS. Does FGF23 toxicity influence the outcome of chronic kidney disease? Nephrol Dial Transplant 2009; 24:4–7.

    Article  PubMed  Google Scholar 

  25. Lanske B, Razzaque MS. Mineral metabolism and aging: the fibroblast growth factor 23 enigma. Curr Opin Nephrol Hypertens 2007; 16:311–8.

    Article  PubMed  CAS  Google Scholar 

  26. Lanske B, Razzaque MS. Premature aging in klotho mutant mice: cause or consequence? Ageing Res Rev 2007; 6:73–9.

    Article  PubMed  Google Scholar 

  27. Takeshita K, Fujimori T, Kurotaki Y et al. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 2004; 109:1776–82.

    Article  PubMed  Google Scholar 

  28. Chen CD, Podvin S, Gillespie E et al. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA 2007; 104:19796–801.

    Article  PubMed  CAS  Google Scholar 

  29. Kuro-o M, Matsumura Y, Aizawa H et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390:45–51.

    Article  PubMed  CAS  Google Scholar 

  30. Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16:107–37.

    Article  PubMed  CAS  Google Scholar 

  31. Kurosu H, Ogawa Y, Miyoshi M et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006; 281:6120–3.

    Article  PubMed  CAS  Google Scholar 

  32. Urakawa I, Yamazaki Y, Shimada T et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444:770–4.

    Article  PubMed  CAS  Google Scholar 

  33. Gattineni J, Bates C, Twombley K et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 2009; 297(2):F282–91.

    Article  PubMed  CAS  Google Scholar 

  34. Liu S, Vierthaler L, Tang W et al. FGFR3 and FGFR4 do not mediate renal effects of FGF23. J Am Soc Nephrol 2008; 19:2342–50.

    Article  PubMed  CAS  Google Scholar 

  35. Medici D, Razzaque MS, Deluca S et al. FGF-23-Klotho signaling stimulates proliferation and prevents vitamin D-induced apoptosis. J Cell Biol 2008; 182:459–65.

    Article  PubMed  CAS  Google Scholar 

  36. Goetz R, Beenken A, Ibrahimi OA et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 2007; 27:3417–28.

    Article  PubMed  CAS  Google Scholar 

  37. Yamazaki Y, Tamada T, Kasai N et al. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 2008; 23:1509–18.

    Article  PubMed  CAS  Google Scholar 

  38. Kuro-o M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 2006; 15:437–41.

    Article  PubMed  CAS  Google Scholar 

  39. Nakatani T, Ohnishi M, Razzaque MS. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. FASEB J 2009; 23:3702–11.

    Article  PubMed  CAS  Google Scholar 

  40. Nakatani T, Bara S, Ohnishi M et al. In vivo genetic evidence of klotho-dependent functions of FGF23 in regulation of systemic phosphate homeostasis. FASEB J 2009; 23:433–41.

    Article  PubMed  CAS  Google Scholar 

  41. Razzaque MS. FGF23-mediated regulation of systemic phosphate homeostasis: is Klotho an essential player? Am J Physiol Renal Physiol 2009; 296:F470–6.

    Article  PubMed  CAS  Google Scholar 

  42. Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol 2007; 194:1–10.

    Article  PubMed  CAS  Google Scholar 

  43. Bai X, Dinghong Q, Miao D et al. Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a Klotho-deficient phenotype. Am J Physiol Endocrinol Metab 2009; 296:E79–88.

    Article  PubMed  CAS  Google Scholar 

  44. Ichikawa S, Imel EA, Kreiter ML et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 2007; 117:2684–91.

    Article  PubMed  CAS  Google Scholar 

  45. Lanske B, Razzaque MS. Vitamin D and aging: old concepts and new insights. J Nutr Biochem 2007; 18:771–7.

    Article  PubMed  CAS  Google Scholar 

  46. Ohnishi M, Nakatani T, Lanske B et al. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1alpha-hydroxylase. Kidney Int 2009; 75:1166–72.

    Article  PubMed  CAS  Google Scholar 

  47. Tsujikawa H, Kurotaki Y, Fujimori T et al. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 2003; 17:2393–403.

    Article  PubMed  CAS  Google Scholar 

  48. Memon F, El-Abbadi M, Nakatani T et al. Does Fgf23-klotho activity influence vascular and soft tissue calcification through regulating mineral ion metabolism? Kidney Int 2008; 74:566–70.

    Article  PubMed  CAS  Google Scholar 

  49. Ohnishi M, Nakatani T, Lanske B et al. In vivo genetic evidence for suppressing vascular and soft tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin-D levels. Circ Cardiovasc Genet 2009; 2:583–90.

    Article  PubMed  CAS  Google Scholar 

  50. Liu S, Tang W, Zhou J et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 2006; 17:1305–15.

    Article  PubMed  CAS  Google Scholar 

  51. Razzaque MS. Can fibroblast growth factor 23 fine-tune therapies for diseases of abnormal mineral ion metabolism? Nat Clin Pract Endocrinol Metab 2007; 3:788–9.

    Article  PubMed  CAS  Google Scholar 

  52. Razzaque MS. The FGF23 Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 2009; 5:611–19.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Razzaque, M.S. (2012). FGF23, Klotho and Vitamin D Interactions:. In: Kuro-o, M. (eds) Endocrine FGFs and Klothos. Advances in Experimental Medicine and Biology, vol 728. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0887-1_5

Download citation

Publish with us

Policies and ethics