Skip to main content

The Structural Biology of the FGF19 Subfamily

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 728))

Abstract

The ability of the Fibroblast Growth Factor (FGF) 19 subfamily to signal in an endocrine fashion sets this subfamily apart from the remaining five FGF subfamilies known for their paracrine functions during embryonic development. Compared to the members of paracrine FGF subfamiles, the three members of the FGF19 subfamily, namely FGF19, FGF21 and FGF23, have poor affinity for heparan sulfate (HS) and therefore can diffuse freely in the HS-rich extracellular matrix to enter into the bloodstream. In further contrast to paracrine FGFs, FGF19 subfamily members have unusually poor affinity for their cognate FGF receptors (FGFRs) and therefore cannot bind and activate them in a solely HS-dependent fashion. As a result, the FGF19 subfamily requires α/βklotho coreceptor proteins in order to bind, dimerize and activate their cognate FGFRs. This klotho-dependency also determines the tissue specificity of endocrine FGFs. Recent structural and biochemical studies have begun to shed light onto the molecular basis for the klotho-dependent endocrine mode of action of the FGF19 subfamily. Crystal structures of FGF19 and FGF23 show that the topology of the HS binding site (HBS) of FGF19 subfamily members deviates drastically from the common topology adopted by the paracrine FGFs. The distinct topologies of the HBS of FGF19 and FGF23 prevent HS from direct hydrogen bonding with the backbone atoms of the HBS of these ligands and accordingly decrease the HS binding affinity of this subfamily. Recent biochemical data reveal that the ?klotho ectodomain binds avidly to the ectodomain of FGFR1c, the main cognate FGFR of FGF23, creating a de novo high affinity binding site for the C-terminal tail of FGF23. The isolated FGF23 C-terminus can be used to effectively inhibit the formation of the FGF23-FGFR1c-αklotho complex and alleviate hypophosphatemia in renal phosphate disorders due to elevated levels of FGF23.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16(2):139–149.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993; 60:1–41.

    Article  PubMed  CAS  Google Scholar 

  3. Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16(2):107–137.

    Article  PubMed  CAS  Google Scholar 

  4. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004;20(11):563–569.

    Article  PubMed  CAS  Google Scholar 

  5. Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 2008; 237(1):18–27.

    Article  PubMed  CAS  Google Scholar 

  6. Popovici C, Roubin R, Coulier F et al. An evolutionary history of the FGF superfamily. Bioessays 2005; 27(8):849–857.

    Article  PubMed  CAS  Google Scholar 

  7. Colvin JS, Green RP, Schmahl J et al. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 2001; 104(6):875–889.

    Article  PubMed  CAS  Google Scholar 

  8. Goriely A, Hansen RM, Taylor IB et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 2009; 41(11):1247–1252.

    Article  PubMed  CAS  Google Scholar 

  9. Goriely A, McVean GA, Rojmyr M et al. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 2003; 301(5633):643–646.

    Article  PubMed  CAS  Google Scholar 

  10. Kato S, Sekine K. FGF-FGFR signaling in vertebrate organogenesis. Cell Mol Biol (Noisy-le-grand) 1999; 45(5):631–638.

    CAS  Google Scholar 

  11. Niswander L, Tickle C, Vogel A et al. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 1993; 75(3):579–587.

    Article  PubMed  CAS  Google Scholar 

  12. Baker RE, Schnell S, Maini PK. A clock and wavefront mechanism for somite formation. Dev Biol 2006; 293(1):116–126.

    Article  PubMed  CAS  Google Scholar 

  13. Dale JK, Malapert P, Chal J et al. Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev Cell 2006; 10(3):355–366.

    Article  PubMed  CAS  Google Scholar 

  14. Dubrulle J, McGrew MJ, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001; 106(2):219–232.

    Article  PubMed  CAS  Google Scholar 

  15. Pourquie O. The chick embryo: a leading model in somitogenesis studies. Mech Dev 2004; 121(9):1069–1079.

    Article  PubMed  CAS  Google Scholar 

  16. Sawada A, Shinya M, Jiang YJ et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 2001; 128(23):4873–4880.

    PubMed  CAS  Google Scholar 

  17. Colvin JS, White AC, Pratt SJ et al. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2001; 128(11):2095–2106.

    PubMed  CAS  Google Scholar 

  18. Itoh N. The Fgf families in humans, mice and zebrafish: their evolutional processes and roles in development, metabolism and disease. Biol Pharm Bull 2007; 30(10):1819–1825.

    Article  PubMed  CAS  Google Scholar 

  19. Lu SY, Sheikh F, Sheppard PC et al. FGF-16 is required for embryonic heart development. Biochem Biophys Res Commun 2008; 373(2):270–274.

    Article  PubMed  CAS  Google Scholar 

  20. Sugi Y, Ito N, Szebenyi G et al. Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation. Dev Biol 2003; 258(2):252–263.

    Article  PubMed  CAS  Google Scholar 

  21. O’Leary DD, Chou SJ, Sahara S. Area patterning of the mammalian cortex. Neuron 2007; 56(2):252–269.

    Article  PubMed  CAS  Google Scholar 

  22. Kharitonenkov A, Shiyanova TL, Koester A et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115(6):1627–1635.

    Article  PubMed  CAS  Google Scholar 

  23. Fu L, John LM, Adams SH et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004; 145(6):2594–2603.

    Article  PubMed  CAS  Google Scholar 

  24. Holt JA, Luo G, Billin AN et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 2003; 17(13):1581–1591.

    Article  PubMed  CAS  Google Scholar 

  25. Tomlinson E, Fu L, John L et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002; 143(5):1741–1747.

    Article  PubMed  CAS  Google Scholar 

  26. Yu X, White KE. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev 2005; 16(2):221–232.

    Article  PubMed  CAS  Google Scholar 

  27. Goetz R, Dover K, Laezza F et al. Crystal structure of a fibroblast growth factor homologous factor (FHF) defines a conserved surface on FHFs for binding and modulation of voltage-gated sodium channels. J Biol Chem 2009; 284(26):17883–17896.

    Article  PubMed  CAS  Google Scholar 

  28. Goldfarb M. Fibroblast growth factor homologous factors: evolution, structure and function. Cytokine Growth Factor Rev 2005; 16(2):215–220.

    Article  PubMed  CAS  Google Scholar 

  29. Olsen SK, Garbi M, Zampieri N et al. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem 2003; 278(36):34226–34236.

    Article  PubMed  CAS  Google Scholar 

  30. Eriksson AE, Cousens LS, Weaver LH et al. Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci USA 1991; 88(8):3441–3445.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang JD, Cousens LS, Barr PJ et al. Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1 beta. Proc Natl Acad Sci USA 1991; 88(8):3446–3450.

    Article  PubMed  CAS  Google Scholar 

  32. Zhu X, Komiya H, Chirino A et al. Three-dimensional structures of acidic and basic fibroblast growth factors. Science 1991; 251(4989):90–93.

    Article  PubMed  CAS  Google Scholar 

  33. Olsen SK, Li JY, Bromleigh C et al. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev 2006; 20(2):185–198.

    Article  PubMed  CAS  Google Scholar 

  34. Plotnikov AN, Hubbard SR, Schlessinger J et al. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 2000; 101(4):413–424.

    Article  PubMed  CAS  Google Scholar 

  35. Yeh BK, Igarashi M, Eliseenkova AV et al. Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. Proc Natl Acad Sci USA 2003; 100(5):2266–2271.

    Article  PubMed  CAS  Google Scholar 

  36. Lee PL, Johnson DE, Cousens LS et al. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 1989; 245(4913):57–60.

    Article  PubMed  CAS  Google Scholar 

  37. Plotnikov AN, Schlessinger J, Hubbard SR et al. Structural basis for FGF receptor dimerization and activation. Cell 1999; 98(5):641–650.

    Article  PubMed  CAS  Google Scholar 

  38. Stauber DJ, DiGabriele AD, Hendrickson WA. Structural interactions of fibroblast growth factor receptor with its ligands. Proc Natl Acad Sci USA 2000; 97(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  39. Olsen SK, Ibrahimi OA, Raucci A et al. Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proc Natl Acad Sci USA 2004; 101(4):935–940.

    Article  PubMed  CAS  Google Scholar 

  40. Wang F, Kan M, Yan G et al. Alternately spliced NH2-terminal immunoglobulin-like Loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. J Biol Chem 1995; 270(17):10231–10235.

    Article  PubMed  CAS  Google Scholar 

  41. Johnson DE, Lu J, Chen H et al. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Biol 1991; 11(9):4627–4634.

    PubMed  CAS  Google Scholar 

  42. Miki T, Bottaro DP, Fleming TP et al. Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci USA 1992; 89(1):246–250.

    Article  PubMed  CAS  Google Scholar 

  43. Orr-Urtreger A, Bedford MT, Burakova T et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 1993; 158(2):475–486.

    Article  PubMed  CAS  Google Scholar 

  44. Forsberg E, Kjellen L. Heparan sulfate: lessons from knockout mice. J Clin Invest 2001; 108(2):175–180.

    PubMed  CAS  Google Scholar 

  45. Lin X, Buff EM, Perrimon N et al. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 1999; 126(17):3715–3723.

    PubMed  CAS  Google Scholar 

  46. Ornitz DM, Yayon A, Flanagan JG et al. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 1992; 12(1):240–247.

    PubMed  CAS  Google Scholar 

  47. Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991; 252(5013):1705–1708.

    Article  PubMed  CAS  Google Scholar 

  48. Yayon A, Klagsbrun M, Esko JD et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64(4):841–848.

    Article  PubMed  CAS  Google Scholar 

  49. Whitelock JM, Iozzo RV. Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 2005; 105(7):2745–2764.

    Article  PubMed  CAS  Google Scholar 

  50. Mohammadi M, Olsen SK, Goetz R. A protein canyon in the FGF-FGF receptor dimer selects from an a la carte menu of heparan sulfate motifs. Curr Opin Struct Biol 2005; 15(5):506–516.

    Article  PubMed  CAS  Google Scholar 

  51. Makarenkova HP, Hoffman MP, Beenken A et al. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci Signal 2009; 2(88):ra55.

    Article  PubMed  CAS  Google Scholar 

  52. Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005; 6(7):530–541.

    Article  PubMed  CAS  Google Scholar 

  53. Saksela O, Moscatelli D, Sommer A et al. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 1988; 107(2):743–751.

    Article  PubMed  CAS  Google Scholar 

  54. Ashikari-Hada S, Habuchi H, Kariya Y et al. Characterization of growth factor-binding structures in heparin/ heparan sulfate using an octasaccharide library. J Biol Chem 2004; 279(13):12346–12354.

    Article  PubMed  CAS  Google Scholar 

  55. Schlessinger J, Plotnikov AN, Ibrahimi OA et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 2000; 6(3):743–750.

    Article  PubMed  CAS  Google Scholar 

  56. Goetz R, Beenken A, Ibrahimi OA et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 2007; 27(9):3417–3428.

    Article  PubMed  CAS  Google Scholar 

  57. Chen H, Ma J, Li W et al. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Mol Cell 2007; 27(5):717–730.

    Article  PubMed  CAS  Google Scholar 

  58. Chen H, Xu CF, Ma J et al. A crystallographic snapshot of tyrosine trans-phosphorylation in action. Proc Natl Acad Sci USA 2008; 105(50):19660–19665.

    Article  PubMed  CAS  Google Scholar 

  59. Furdui CM, Lew ED, Schlessinger J et al. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell 2006; 21(5):711–717.

    Article  PubMed  CAS  Google Scholar 

  60. Mohammadi M, Dikic I, Sorokin A et al. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 1996; 16(3):977–989.

    PubMed  CAS  Google Scholar 

  61. Mohammadi M, Dionne CA, Li W et al. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 1992; 358(6388):681–684.

    Article  PubMed  CAS  Google Scholar 

  62. Peters KG, Marie J, Wilson E et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 1992; 358(6388):678–681.

    Article  PubMed  CAS  Google Scholar 

  63. Seo JH, Suenaga A, Hatakeyama M et al. Structural and functional basis of a role for CRKL in a fibroblast growth factor 8-induced feed-forward loop. Mol Cell Biol 2009; 29(11):3076–3087.

    Article  PubMed  CAS  Google Scholar 

  64. Divecha N, Irvine RF. Phospholipid signaling. Cell 1995; 80(2):269–278.

    Article  PubMed  CAS  Google Scholar 

  65. Huang J, Mohammadi M, Rodrigues GA et al. Reduced activation of RAF-1 and MAP kinase by a fibroblast growth factor receptor mutant deficient in stimulation of phosphatidylinositol hydrolysis. J Biol Chem 1995;270(10):5065–5072.

    Article  PubMed  CAS  Google Scholar 

  66. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103(2):211–225.

    Article  PubMed  CAS  Google Scholar 

  67. Kouhara H, Hadari YR, Spivak-Kroizman T et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997; 89(5):693–702.

    Article  PubMed  CAS  Google Scholar 

  68. Dhalluin C, Yan KS, Plotnikova O et al. Structural basis of SNT PTB domain interactions with distinct neurotrophic receptors. Mol Cell 2000; 6(4):921–929.

    Article  PubMed  CAS  Google Scholar 

  69. Ong SH, Guy GR, Hadari YR et al. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 2000; 20(3):979–989.

    Article  PubMed  CAS  Google Scholar 

  70. Ong SH, Hadari YR, Gotoh N et al. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci USA 2001; 98(11):6074–6079.

    Article  PubMed  CAS  Google Scholar 

  71. Hadari YR, Kouhara H, Lax I et al. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol Cell Biol 1998; 18(7):3966–3973.

    PubMed  CAS  Google Scholar 

  72. Dailey L, Ambrosetti D, Mansukhani A et al. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 2005; 16(2):233–247.

    Article  PubMed  CAS  Google Scholar 

  73. Bellosta P, Iwahori A, Plotnikov AN et al. Identification of receptor and heparin binding sites in fibroblast growth factor 4 by structure-based mutagenesis. Mol Cell Biol 2001; 21(17):5946–5957.

    Article  PubMed  CAS  Google Scholar 

  74. Kalinina J, Byron SA, Makarenkova HP et al. Homodimerization Controls the FGF9 Subfamily’s Receptor Binding and Heparan Sulfate Dependent Diffusion in the Extracellular Matrix. Mol Cell Biol 2009.

    Google Scholar 

  75. Osslund TD, Syed R, Singer E et al. Correlation between the 1.6 A crystal structure and mutational analysis of keratinocyte growth factor. Protein Sci 1998; 7(8):1681–1690.

    Article  PubMed  CAS  Google Scholar 

  76. Plotnikov AN, Eliseenkova AV, Ibrahimi OA et al. Crystal structure of fibroblast growth factor 9 reveals regions implicated in dimerization and autoinhibition. J Biol Chem 2001; 276(6):4322–4329.

    Article  PubMed  CAS  Google Scholar 

  77. Luo Y, Lu W, Mohamedali KA et al. The glycine box: a determinant of specificity for fibroblast growth factor. Biochemistry 1998; 37(47):16506–16515.

    Article  PubMed  CAS  Google Scholar 

  78. DiGabriele AD, Lax I, Chen DI et al. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature 1998; 393(6687):812–817.

    Article  PubMed  CAS  Google Scholar 

  79. Faham S, Hileman RE, Fromm JR et al. Heparin structure and interactions with basic fibroblast growth factor. Science 1996; 271(5252):1116–1120.

    Article  PubMed  CAS  Google Scholar 

  80. Zhu X, Hsu BT, Rees DC. Structural studies of the binding of the anti-ulcer drug sucrose octasulfate to acidic fibroblast growth factor. Structure 1993; 1(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  81. Hogan BL, Yingling JM. Epithelial/mesenchymal interactions and branching morphogenesis of the lung. Curr Opin Genet Dev 1998; 8(4):481–486.

    Article  PubMed  CAS  Google Scholar 

  82. Jin C, Wang F, Wu X et al. Directionally specific paracrine communication mediated by epithelial FGF9 to stromal FGFR3 in two-compartment premalignant prostate tumors. Cancer Res 2004; 64(13):4555–4562.

    Article  PubMed  CAS  Google Scholar 

  83. Pirvola U, Zhang X, Mantela J et al. Fgf9 signaling regulates inner ear morphogenesis through epithelial-mesenchymal interactions. Dev Biol 2004; 273(2):350–360.

    Article  PubMed  CAS  Google Scholar 

  84. Xu X, Weinstein M, Li C et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 1998; 125(4):753–765.

    PubMed  CAS  Google Scholar 

  85. Zhang X, Stappenbeck TS, White AC et al. Reciprocal epithelial-mesenchymal FGF signaling is required for cecal development. Development 2006; 133(1):173–180.

    Article  PubMed  CAS  Google Scholar 

  86. Bellusci S, Grindley J, Emoto H et al. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 1997; 124(23):4867–4878.

    PubMed  CAS  Google Scholar 

  87. Hoffman MP, Kidder BL, Steinberg ZL et al. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP-and FGF-dependent mechanisms. Development 2002; 129(24):5767–5778.

    Article  PubMed  CAS  Google Scholar 

  88. Izvolsky KI, Shoykhet D, Yang Y et al. Heparan sulfate-FGF10 interactions during lung morphogenesis. Dev Biol 2003; 258(1):185–200.

    Article  CAS  Google Scholar 

  89. Makarenkova HP, Ito M, Govindarajan V et al. FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development. Development 2000; 127(12):2563–2572.

    PubMed  CAS  Google Scholar 

  90. Sekine K, Ohuchi H, Fujiwara M et al. Fgf10 is essential for limb and lung formation. Nat Genet 1999; 21(1):138–141.

    Article  PubMed  CAS  Google Scholar 

  91. Liu A, Joyner AL. Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 2001; 24:869–896.

    Article  PubMed  CAS  Google Scholar 

  92. Sun X, Mariani FV, Martin GR. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 2002; 418(6897):501–508.

    Article  PubMed  CAS  Google Scholar 

  93. A utosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26(3):345–348.

    Google Scholar 

  94. Goetz R, Nakada Y, Hu MC et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci USA 2009.

    Google Scholar 

  95. Shimada T, Muto T, Urakawa I et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 2002; 143(8):3179–3182.

    Article  PubMed  CAS  Google Scholar 

  96. Shimada T, Mizutani S, Muto T et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 2001; 98(11):6500–6505.

    Article  PubMed  CAS  Google Scholar 

  97. Shiraki-Iida T, Aizawa H, Matsumura Y et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 1998; 424(1–2):6–10.

    Article  PubMed  CAS  Google Scholar 

  98. Kharitonenkov A, Dunbar JD, Bina HA et al. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J Cell Physiol 2008; 215(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  99. Kurosu H, Choi M, Ogawa Y et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007; 282(37):26687–26695.

    Article  PubMed  CAS  Google Scholar 

  100. Lin BC, Wang M, Blackmore C et al. Liver-specific activities of FGF19 require Klotho beta. J Biol Chem 2007; 282(37):27277–27284.

    Article  PubMed  CAS  Google Scholar 

  101. Ogawa Y, Kurosu H, Yamamoto M et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 2007; 104(18):7432–7437.

    Article  PubMed  CAS  Google Scholar 

  102. Suzuki M, Uehara Y, Motomura-Matsuzaka K et al. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008; 22(4):1006–1014.

    Article  PubMed  CAS  Google Scholar 

  103. Wu X, Ge H, Gupte J et al. Co-receptor requirements for fibroblast growth factor-19 signaling. J Biol Chem 2007; 282(40):29069–29072.

    Article  PubMed  CAS  Google Scholar 

  104. Kurosu H, Ogawa Y, Miyoshi M et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006; 281(10):6120–6123.

    Article  PubMed  CAS  Google Scholar 

  105. Urakawa I, Yamazaki Y, Shimada T et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444(7120):770–774.

    Article  PubMed  CAS  Google Scholar 

  106. Kuro-o M, Matsumura Y, Aizawa H et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390(6655):45–51.

    Article  PubMed  CAS  Google Scholar 

  107. Shimada T, Kakitani M, Yamazaki Y et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113(4):561–568.

    PubMed  CAS  Google Scholar 

  108. Inagaki T, Choi M, Moschetta A et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2(4):217–225.

    Article  PubMed  CAS  Google Scholar 

  109. Ito S, Fujimori T, Furuya A et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 2005; 115(8):2202–2208.

    Article  PubMed  CAS  Google Scholar 

  110. Yu C, Wang F, Kan M et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 2000; 275(20):15482–15489.

    Article  PubMed  CAS  Google Scholar 

  111. Gattineni J, Bates C, Twombley K et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 2009; 297(2):F282–291.

    Article  PubMed  CAS  Google Scholar 

  112. Bai XY, Miao D, Goltzman D et al. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 2003; 278(11):9843–9849.

    Article  CAS  Google Scholar 

  113. Fukumoto S. Physiological regulation and disorders of phosphate metabolism-pivotal role of fibroblast growth factor 23. Intern Med 2008; 47(5):337–343.

    Article  PubMed  Google Scholar 

  114. Larsson T, Marsell R, Schipani E et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia and disturbed phosphate homeostasis. Endocrinology 2004; 145(7):3087–3094.

    Article  PubMed  CAS  Google Scholar 

  115. Liu S, Guo R, Simpson LG et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 2003; 278(39):37419–37426.

    Article  PubMed  CAS  Google Scholar 

  116. Riminucci M, Collins MT, Fedarko NS et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003; 112(5):683–692.

    PubMed  CAS  Google Scholar 

  117. Saito H, Kusano K, Kinosaki M et al. Human fibroblast growth factor-23 mutants suppress Na?-dependent phosphate cotransport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 2003; 278(4):2206–2211.

    Article  PubMed  CAS  Google Scholar 

  118. Segawa H, Kawakami E, Kaneko I et al. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch 2003; 446(5):585–592.

    Article  PubMed  CAS  Google Scholar 

  119. Lundasen T, Galman C, Angelin B et al. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 2006; 260(6):530–536.

    Article  PubMed  CAS  Google Scholar 

  120. Choi M, Moschetta A, Bookout AL et al. Identification of a hormonal basis for gallbladder filling. Nat Med 2006; 12(11):1253–1255.

    Article  PubMed  CAS  Google Scholar 

  121. Nishimura T, Nakatake Y, Konishi M et al. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000; 1492(1):203–206.

    PubMed  CAS  Google Scholar 

  122. Badman MK, Pissios P, Kennedy AR et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007; 5(6):426–437.

    Article  PubMed  CAS  Google Scholar 

  123. Galman C, Lundasen T, Kharitonenkov A et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 2008; 8(2):169–174.

    Article  PubMed  CAS  Google Scholar 

  124. Inagaki T, Dutchak P, Zhao G et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5(6):415–425.

    Article  PubMed  CAS  Google Scholar 

  125. Palou M, Priego T, Sanchez J et al. Sequential changes in the expression of genes involved in lipid metabolism in adipose tissue and liver in response to fasting. Pflugers Arch 2008; 456(5):825–836.

    Article  PubMed  CAS  Google Scholar 

  126. Coskun T, Bina HA, Schneider MA et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008; 149(12): 6018–27.

    Article  PubMed  CAS  Google Scholar 

  127. Kharitonenkov A, Wroblewski VJ, Koester A et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007; 148(2):774–781.

    Article  PubMed  CAS  Google Scholar 

  128. Wente W, Efanov AM, Brenner M et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006; 55(9):2470–2478.

    Article  PubMed  CAS  Google Scholar 

  129. Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs 2008; 22(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  130. Jonsson KB, Zahradnik R, Larsson T et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003; 348(17):1656–1663.

    Article  PubMed  CAS  Google Scholar 

  131. Yamazaki Y, Okazaki R, Shibata M et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 2002; 87(11):4957–4960.

    Article  PubMed  CAS  Google Scholar 

  132. Araya K, Fukumoto S, Backenroth R et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 2005; 90(10):5523–5527.

    Article  PubMed  CAS  Google Scholar 

  133. Benet-Pages A, Orlik P, Strom TM et al. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14(3):385–390.

    Article  PubMed  CAS  Google Scholar 

  134. Larsson T, Yu X, Davis SI et al. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab 2005; 90(4):2424–2427.

    Article  PubMed  CAS  Google Scholar 

  135. Lyles KW, Burkes EJ, Ellis GJ et al. Genetic transmission of tumoral calcinosis: autosomal dominant with variable clinical expressivity. J Clin Endocrinol Metab 1985; 60(6):1093–1096.

    Article  PubMed  CAS  Google Scholar 

  136. Gutierrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359(6):584–592.

    Article  PubMed  CAS  Google Scholar 

  137. Harmer NJ, Pellegrini L, Chirgadze D et al. The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity. Biochemistry 2004; 43(3):629–640.

    Article  PubMed  CAS  Google Scholar 

  138. Wu X, Ge H, Lemon B et al. FGF19 induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem 2009.

    Google Scholar 

  139. Zhu H, Ramnarayan K, Anchin J et al. Glu-96 of basic fibroblast growth factor is essential for high affinity receptor binding. Identification by structure-based site-directed mutagenesis. J Biol Chem 1995; 270(37):21869–21874.

    Article  PubMed  CAS  Google Scholar 

  140. Burmeister WP, Cottaz S, Rollin P et al. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem 2000; 275(50):39385–39393.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moosa Mohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Beenken, A., Mohammadi, M. (2012). The Structural Biology of the FGF19 Subfamily. In: Kuro-o, M. (eds) Endocrine FGFs and Klothos. Advances in Experimental Medicine and Biology, vol 728. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0887-1_1

Download citation

Publish with us

Policies and ethics