Advertisement

Surface Plasmon Resonance Based Fiber Optic Sensors

  • Banshi D. Gupta
Chapter
Part of the Reviews in Plasmonics book series (RIP, volume 2010)

Abstract

In recent years, the phenomenon of surface plasmon resonance (SPR) has fascinated a large number of researchers across the world due to its usefulness in various optical devices. Surface plasmons are the electromagnetic excitations generated due to charge density fluctuations at the interface between a metal and a dielectric. These are transverse magnetically (TM) polarized waves that travel along the interface. The field associated with these waves decays exponentially in both the media (metal and dielectric). Because of TM polarized wave, surface plasmons can be excited by a TM or p-polarized light. The resonance between the two occurs when their wave vectors are equal resulting in the transfer of energy to from incident light to surface plasmon wave. The wave vector of surface plasmon wave depends on the dielectric constant of the medium in contact of the metal.

Keywords

Surface Plasmon Resonance Transverse Magnetically Evanescent Wave Resonance Wavelength Surface Plasmon Resonance Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The present work is partially supported by the Department of Science and Technology (India).

References

  1. 1.
    Liedberg, B., Nylander, C. and Sundstrom, I. (1983). Surface Plasmon Resonance for Gas Detection and Biosensing, Sensors and Actuators, 4, 299–304.CrossRefGoogle Scholar
  2. 2.
    van Gent, J., Lambeck, P.V., Kreuwel, H.J.M., Gerritsma, G.L., Sudholter, E.J.R., Reinhoudt, D.N. and Popma, T.J.A. (1990). Optimization of a Chemooptical Surface Plasmon Resonance based Sensor”, Applied Optics, 29 (19), 2843–2849.PubMedCrossRefGoogle Scholar
  3. 3.
    Stenberg, E., Persson, B., Roos, H. and Urbaniczky, C. (1991). Quantitative Determination of Surface Concentration of Protein with Surface Plasmon Resonance using Radiolabeled Proteins, Journal of Colloid and Interface Science, 143 (2), 513–526.CrossRefGoogle Scholar
  4. 4.
    Dougherty, G. (1993). A Compact Optoelectronic Instrument with a Disposable Sensor based on Surface Plasmon Resonance, Measurement Science and Technology, 4, 697–699.CrossRefGoogle Scholar
  5. 5.
    Ekgasit, S., Tangcharoenbumrungsuk, A., Yu, F., Baba, A. and Knoll, W. (2005). Resonance Shifts in SPR Curves of Nonabsorbing, Weakly Absorbing, and Strongly Absorbing Dielectrics”, Sensors and Actuators B, 105, 532–541.CrossRefGoogle Scholar
  6. 6.
    Chyou, J.J., Chu, C.S., Chien, F.C., Lin, C.Y., Yeh, T.L., Hsu, R.C. and Chen, S.J. (2006). Precise Determination of the Dielectric Constant and Thickness of a Nanolayer by Use of Surface Plasmon Resonance Sensing and Multiexperiment Linear Data Analysis, Applied Optics, 45 (23), 6038–6044.PubMedCrossRefGoogle Scholar
  7. 7.
    Chiang, H.P., Chen, C.W., Wu, J.J., Li, H.L., Lin, T.Y., Sanchez, E.J. and Leung, P.T. (2007). Effects of Temperature on the Surface Plasmon Resonance at a Metal-Semiconductor Interface, Thin Solid Films, 515, 6953–6961.CrossRefGoogle Scholar
  8. 8.
    Person, J.L., Colas, F., Compere, C., Lehaitre, M., Anne, M.L., Boussard-Pledel, C., Bureau, B., Adam, J.L., Deputier, S. and Guilloux-Viry, M. (2007). Surface Plasmon Resonance in Chalcogenide Glass based Optical System, Sensors and Actuators B, 130, 771–776.CrossRefGoogle Scholar
  9. 9.
    Feng, W., Shenye, L., Xiaoshi, P., Zhuangqi, C. and Yongkun, D. (2008). Reflective Type Configuration for Monitoring the Photobleaching Procedure based on Surface Plasmon Resonance, Journal of Optics A: Pure and Applied Optics, 10, 095102.CrossRefGoogle Scholar
  10. 10.
    Jorgenson, R.C. and Yee, S.S. (1993). A Fiber-Optic Chemical Sensor based on Surface Plasmon Resonance, Sensors and Actuators B, 12, 213–220.CrossRefGoogle Scholar
  11. 11.
    Harris, R.D. and Wilkinson, J.S. (1995). Waveguide Surface Plasmon Resonance Sensors, Sensors and Actuators B, 29, 261–267.CrossRefGoogle Scholar
  12. 12.
    Lin, W.B., Jaffrezic-Renault, N., Gagnaire, A. and Gagnaire, H. (2000). The Effects of Polarization of the Incident Light-Modeling and Analysis of a SPR Multimode Optical Fiber Sensor, Sensors and Actuators A, 84, 198–204.CrossRefGoogle Scholar
  13. 13.
    Slavík, R., Homola, J., Ctyroký, J. and Brynda, E. (2001). Novel Spectral Fiber Optic Sensor based on Surface Plasmon Resonance, Sensors and Actuators B, 74, 106–111.CrossRefGoogle Scholar
  14. 14.
    Piliarik, M., Homola, J., Maníková, Z. and Ctyroký, J. (2003). Surface Plasmon Resonance Sensor based on a Single-Mode Polarization-Maintaining Optical Fiber, Sensors and Actuators B, 90, 236–242.CrossRefGoogle Scholar
  15. 15.
    Gentleman, D.J., Obando, L.A., Masson, J.F., Holloway, J.R. and Booksh, K. (2004). Calibration of Fiber Optic based Surface Plasmon Resonance Sensors in Aqueous Systems”, Analytica Chimica Acta, 515, 291–302.CrossRefGoogle Scholar
  16. 16.
    Sharma, A.K. and Gupta, B.D. (2004). Absorption-based Fiber Optic Surface Plasmon Resonance Sensor: A Theoretical evaluation, Sensors and Actuators B, 100, 423–431.CrossRefGoogle Scholar
  17. 17.
    Mitsushio, M., Higashi, S. and Higo, M. (2004). Construction and Evaluation of a Gold-Deposited Optical Fiber Sensor System for Measurements of Refractive Indices of Alcohols, Sensors and Actuators A, 111, 252–259.CrossRefGoogle Scholar
  18. 18.
    Kim, Y., Peng, W., Banerji, S. and Booksh, K.S. (2005). Tapered Fiber Optic Surface Plasmon Resonance Sensor for Analyses of Vapor and Liquid Phases, Optics Letters, 30 (17), 2218–2220.PubMedCrossRefGoogle Scholar
  19. 19.
    Sharma, A.K. and Gupta, B.D. (2005). On the Sensitivity and Signal to Noise Ratio of a ­Step-Index Fiber Optic Surface Plasmon Resonance Sensor with Bimetallic Layers, Optics Communications, 245, 159–169.CrossRefGoogle Scholar
  20. 20.
    Gupta, B.D. and Sharma, A.K. (2005). Sensitivity Evaluation of a Multi-Layered Surface Plasmon Resonance-based Fiber Optic Sensor: A Theoretical Study, Sensors and Actuators B, 107, 40–46.CrossRefGoogle Scholar
  21. 21.
    Rajan, Chand, S. and Gupta, B.D. (2006). Fabrication and Characterization of a Surface Plasmon Resonance based Fiber-Optic Sensor for Bittering Component—Naringin, Sensors and Actuators B, 115, 344–348.Google Scholar
  22. 22.
    Diaz-Herrera, N., Esteban, O., Navarrete, M.C., Haitre, M.L. and Gonzalez-Cano, A. (2006). In Situ Salinity Measurements in Seawater with a Fibre-Optic Probe, Measurement Science and Technology, 17, 2227–2232.CrossRefGoogle Scholar
  23. 23.
    Sharma, A.K., Jha, R. and Gupta, B.D. (2007). Fiber-Optic Sensors based on Surface Plasmon Resonance: A Comprehensive Review, IEEE Sensors Journal, 7 (8), 1118–1129.CrossRefGoogle Scholar
  24. 24.
    Yu-Cheng, L., Yu-Chia, T., Woo-Hu, T., Tsui-Shan, H., Ko-Shao, C. and Shu-Chuan, L. (2008). The Enhancement Method of Optical Fiber Biosensor based on Surface Plasmon Resonance with Cold Plasma Modification, Sensors and Actuators B, 133, 370–373.CrossRefGoogle Scholar
  25. 25.
    Kanso, M., Cuenot, S. and Louarn, G. (2008). Sensitivity of Optical Fiber Sensor based on Surface Plasmon Resonance: Modeling and Experiments, Plasmonics, 3(2–3), 49–57.CrossRefGoogle Scholar
  26. 26.
    Navarrete, M.C., Diaz-Herrera, N., Gonzalez-Cano, A. and Esteban, O. (2010) A Polarization Independent SPR Fiber Sensor, Plasmonics, 5, 7–12.Google Scholar
  27. 27.
    Yan, J., Lu, Y., Wang, P., Gu, C., Zheng, R., Chen, Y., Ming, H. and Zhan, Q. (2009). Improving the Sensitivity of Fiber-Optic SPR Sensor via Radially Polarized Beam Excitation, Chinese Optics Letters, 7(10), 909–911.CrossRefGoogle Scholar
  28. 28.
    Yanase, Y., Araki, A., Suzuki, H., Tsutsui, T., Kimura, T., Okamoto, K., Nakatani, T., Hiragun, T. and Hide, M. (2010) Development of an Optical Fiber SPR Sensor for Living Cell Activation, Biosensors and Bioelectronics, 25, 1244–1247.PubMedCrossRefGoogle Scholar
  29. 29.
    Kretchmann, E. and Reather, H. (1968). Radiative Decay of Non-Radiative Surface Plasmons Excited by Light, Naturforsch, 23, 2135–2136.Google Scholar
  30. 30.
    Zynio, S.A., Samoylov, A.V., Surovtseva, E.R., Mirsky, V.M. and Shirsov, Y.M. (2002). Bimetallic Layers Increase Sensitivity of Affinity Sensors based on Surface Plasmon Resonance, Sensors, 2, 62–70.CrossRefGoogle Scholar
  31. 31.
    Rajan, Chand, S. and Gupta, B.D. (2007). Surface Plasmon Resonance based Fiber-Optic Sensor for the Detection of Pesticide, Sensors and Actuators B, 123, 661–666.Google Scholar
  32. 32.
    Gentleman, D.J. and Booksh, K.S. (2006). Determining Salinity using a Multimode Fiber Optic Surface Plasmon Resonance Dip-Probe, Talanta, 68, 504–515.PubMedCrossRefGoogle Scholar
  33. 33.
    Matsushita, T., Nishikawa, T., Yamashita, H., Kishimoto, J. and Okuno, Y. (2008). Development of New Single-Mode Waveguide Surface Plasmon Resonance Sensor using a Polymer Imprint Process for High-Throughput Fabrication and Improved Design Flexibility, Sensors and Actuators B, 129, 881–887.CrossRefGoogle Scholar
  34. 34.
    Ozdemir, S.K. and Sayan, G.T. (2003). Temperature Effects on Surface Plasmon Resonance: Design Considerations for an Optical Temperature Sensor, Journal of Lightwave Technology, 21 (3), 805–814.CrossRefGoogle Scholar
  35. 35.
    Sharma, A.K. and Gupta, B.D. (2006). Theoretical Model of a Fiber Optic Remote Sensor based on Surface Plasmon Resonance for Temperature Detection, Optical Fiber Technology, 12, 87–100.CrossRefGoogle Scholar
  36. 36.
    Mitsushio, M., Miyashita, K. and Higo, M. (2006). Sensor Properties and Surface Characterization of the Metal-Deposited SPR Optical Fiber Sensors with Au, Ag, Cu and Al, Sensors and Actuators A, 125, 296–303.CrossRefGoogle Scholar
  37. 37.
    Sharma, A.K. and Gupta, B.D. (2005). On the Performance of Different Bimetallic Combinations in Surface Plasmon Resonance based Fiber Optic Sensors, Journal of Applied Physics, 101, 093111.CrossRefGoogle Scholar
  38. 38.
    Sharma, A.K., Rajan and Gupta, B.D. (2007). Influence of Dopants on the Performance of a Fiber Optic Surface Plasmon Resonance Sensor, Optics Communications, 274, 320–326.Google Scholar
  39. 39.
    Grunwald, B. and Holst, G. (2004). Fibre Optic Refractive Index Microsensor based on White-Light SPR Excitation, Sensors and Actuators A, 113, 174–180.CrossRefGoogle Scholar
  40. 40.
    Verma, R.K., Sharma, A.K. and Gupta, B.D. (2008). Surface Plasmon Resonance based Tapered Fiber Optic Sensor with Different Taper Profiles, Optics Communications, 281, 1486–1491.CrossRefGoogle Scholar
  41. 41.
    Verma, R.K., Sharma, A.K. and Gupta, B.D. (2007). Modeling of Tapered Fiber-Optic Surface Plasmon Resonance Sensor with Enhanced Sensitivity, IEEE Photonics Technology Letters, 19 (22), 1786–1788.CrossRefGoogle Scholar
  42. 42.
    Verma, R.K. and Gupta, B.D. (2008). Theoretical Modeling of a Bi-dimensional U-Shaped Surface Plasmon Resonance based Fibre Optic Sensor for Sensitivity Enhancement, Journal of Physics D: Applied Physics, 41, 095106.CrossRefGoogle Scholar
  43. 43.
    Homola, J. and Slavik, R. (1996). Fibre-Optic Sensor based on Surface Plasmon Resonance, Electronics Letters, 32(5), 480–482.CrossRefGoogle Scholar
  44. 44.
    Lin, H.Y., Tsai, W.H., Tsao, Y.C. and Sheu, B.C. (2007). Side-Polished Multimode Fiber Biosensor based on Surface Plasmon Resonance with Halogen Light”, Applied Optics, 46(5), 800–806.PubMedCrossRefGoogle Scholar
  45. 45.
    Chiu, M.H., Shih, C.H. and Chi, M.H. (2007). Optimum Sensitivity of Single-Mode D-Type Optical Fiber Sensor in the Intensity Measurement, Sensors and Actuators B, 123, ­1120–1124.CrossRefGoogle Scholar
  46. 46.
    Chiu, M.H. and Shih, C.H. (2008). Searching for Optimal Sensitivity of Single-Mode D-Type Optical Fiber Sensor in the Phase Measurement, Sensors and Actuators B, 131, 596–601.CrossRefGoogle Scholar
  47. 47.
    Suzuki, H., Sugimoto, M., Matsui, Y. and Kondoh, J. (2008). Effects of Gold Film Thickness on Spectrum Profile and Sensitivity of a Multimode-Optical-Fiber SPR Sensor, Sensors and Actuators B, 132, 26–33.CrossRefGoogle Scholar
  48. 48.
    Kurihara, K., Ohkawa, H., Iwasaki, Y., Niwa, O., Tobita, T. and Suzuki, K. (2004). Fiber-Optic Conical Microsensors for Surface Plasmon Resonance using Chemically Etched Single-Mode Fiber, Analytica Chimica Acta, 523, 165–170.CrossRefGoogle Scholar
  49. 49.
    Abrahamyan, T. and Nerkararyan, Kh. (2007). Surface Plasmon Resonance on Vicinity of Gold-Coated Fiber Tip, Physics Letters A, 364, 494–496.CrossRefGoogle Scholar
  50. 50.
    Hassani, A. and Skorobogatiy, M. (2007). Design Criteria for Microstructured-Optical-Fiber-based Surface-Plasmon-Resonance Sensors, Journal of Optical Society of America B, 24 (6), 1423–1429.CrossRefGoogle Scholar
  51. 51.
    Gauvreau, B., Hassani, A., Fehri, M.F., Kabashin, A. and Skorobogatiy, M. (2007). Photonic Bandgap Fiber-based Surface Plasmon Resonance Sensors, Optics Express, 15(18), 11413–11426.PubMedCrossRefGoogle Scholar
  52. 52.
    Dwivedi, Y.S., Sharma, A.K. and Gupta, B.D. (2006). Influence of Skew Rays on the Sensitivity and Signal-to-Noise Ratio of a Fiber Optic Surface-Plasmon-Resonance Sensor: A Theoretical Study, Applied Optics, 46 (21), 4563–4569.CrossRefGoogle Scholar
  53. 53.
    Allsop, T., Neal, R., Mou, C., Brown, P., Saied, S., Rehman, S., Kalli, K., Webb, D.J., Sullivan, J., Mapps, D. and Bennion, I. (2009). Exploitation of Multilayer Coatings for Infrared Surface Plasmon Resonance Fiber Sensors, Applied Optics, 48(2), 276–286.PubMedCrossRefGoogle Scholar
  54. 54.
    Nemova, G. and Kashyap, R. (2006). Fiber Bragg Grating Assisted Surface Plasmon Polariton Sensor, Optics Letters 31 (14), 2118–2120.PubMedCrossRefGoogle Scholar
  55. 55.
    Shevchenko, Y.Y. and Albert, J. (2007). Plasmon Resonances in Gold Coated Tilted Fiber Bragg Gratings. Optics Letters 32 (3), 211–213.PubMedCrossRefGoogle Scholar
  56. 56.
    Tripathi, S.M., Kumar, A., Marin, E. and Meunier, J.P. (2008). Side Polished Optical Fiber Grating based Refractive Index Sensors Utilizing the Pure Surface Plasmon, Journal of Lightwave Technology, 26 (13), 1980–1985.CrossRefGoogle Scholar
  57. 57.
    Ding, J., Shao, L., Su, H. and Ruan, S. (2008). A Highly Sensitive Refractive Index Sensor based on the Long Period Grating Pair with a Fiber Taper in Between, International Conference on Advanced Infocomm Technology’08, China.Google Scholar
  58. 58.
    Kashyap, R. and Nemova, G. (2009). Surface Plasmon Resonance based Fiber and Planer Waveguide Sensors, Journal of Sensors, 2009, 645162.CrossRefGoogle Scholar
  59. 59.
    Buckley, R. and Berini, P. (2007). Figure of Merit for 2D Surface Plasmon Waveguides and Applications to Metal Strips, Optics Express, 15(19), 12174–12182.PubMedCrossRefGoogle Scholar
  60. 60.
    Verma, R.K. and Gupta, B.D. (2010). Surface Plasmon Resonance based Fiber Optic Sensor for Infrared Region using Conducting Metal Oxide Film, Journal of Optical Society of America A, 27, 846–851.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations