Skip to main content

Touch Sensitive Dielectric Elastomer Artificial Muscles

  • Chapter
  • First Online:
Electroactivity in Polymeric Materials

Abstract

Comb jellies are tiny sea animals that do not have brains, yet they can control the synchronous beat of hundreds of swimming paddles to navigate the water column in search of food. Waves of actuation travel down rows of paddles that run the length of the animal’s body to generate thrust. This is achieved using distributed local feedback and a simple control rule: each paddle only actuates when it is touched, and when it actuates it sweeps forward to touch the next paddle in line. No central brain is required to tell each paddle when to fire. We have created a scalable array of Dielectric Elastomer Actuators (DEA) that mimics the swimming paddles of the comb jelly and have implemented this array in a simple conveyor mechanism. Each DEA is made touch sensitive by sensing changes in its capacitance, eliminating the need for bulky external sensors. The array is inherently self-regulating and each DEA only actuates when it is touched, ensuring the conveyor automatically adjusts to the properties of the object being conveyed. This is a simple solution to a simple application, but it brings us one step closer to scalable, artificial muscle actuator arrays that might perform such useful tasks as assembly line conveyance and water propulsion. It also paves the way for more advanced systems that take into account DEA properties other than capacitance such as electrode resistance and leakage current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson IA, Kim L (2006) Force measurement. In: Akay M (ed) Wiley encyclopedia of biomedical engineering. Wiley, New York, pp 1–4

    Google Scholar 

  2. Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A: Phys 64(1):77–85. doi:10.1016/S0924-4247(97)01657-9

    Article  Google Scholar 

  3. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454):836–839. doi:10.1126/science.287.5454.836

    Article  Google Scholar 

  4. Madden JDW et al (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29(3):706–728

    Article  Google Scholar 

  5. Kofod G, Sommer-Larsen P, Kornbluh R, Pelrine R (2003) Actuation response of polyacrylate dielectric elastomers. J Intell Mater Syst Struct 14(12):787–793. doi:10.1177/104538903039260

    Article  Google Scholar 

  6. Kofod G, Sommer-Larsen P (2005) Silicone dielectric elastomer actuators: finite-elasticity model of actuation. Sens Actuators A: Phys 122(2):273–283. doi:10.1016/j.sna.2005.05.001

    Article  Google Scholar 

  7. McKay TG, Calius E, Anderson IA (2009) The dielectric constant of 3M VHB: a parameter in dispute. EAPAD 2009 Proc SPIE 7287:72870P. doi:10.1117/12.815821

  8. Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523

    Article  Google Scholar 

  9. Gisby TA (2011) Smart artificial muscles bioengineering. PhD Thesis. University of Auckland, NZ

    Google Scholar 

  10. Buchsbaum R, Buchsbaum M, Pearse J, Pearse V (1987) Animals without backbones, 3rd edn. The University of Chicago Press, Chicago

    Google Scholar 

  11. O’Brien B, Gisby T, Calius E, Xie S, Anderson I (2009) FEA of dielectric elastomer minimum energy structures as a tool for biomimetic design. Proc. SPIE 7287:728706-1-728706-11. doi:10.1117/12.815818

    Google Scholar 

  12. Kofod G, Wirges W, Paajanen M, Bauer S (2007) Energy minimization for self-organized structure formation and actuation. Appl Phy Lett 90(8):081916-1–081916-3. doi:10.1063/1.2695785

    Article  Google Scholar 

  13. Toth LA and Goldenberg AA (2002) Control system design for a dielectric elastomer actuator: the sensory subsystem. EAPAD 2002 Proc SPIE 4695:323. doi:10.1117/12.475179

  14. Jung K, Kim KJ, Choi HR (2008) A self-sensing dielectric elastomer actuator. Sens Actuators A: Phys 143(2):343–351. doi:10.1016/j.sna.2007.10.076

    Article  MathSciNet  Google Scholar 

  15. Keplinger C, Kaltenbrunner M, Arnold N, Bauer S (2008) Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl Phy Lett 92(19):192903-1–192903-3. doi:10.1063/1.2929383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain A. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gisby, T., O’Brien, B., Anderson, I.A. (2012). Touch Sensitive Dielectric Elastomer Artificial Muscles. In: Rasmussen, L. (eds) Electroactivity in Polymeric Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0878-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0878-9_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0877-2

  • Online ISBN: 978-1-4614-0878-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics