Skip to main content

Joint Optimization of Resources and Routes for Minimum Resistance: From Communication Networks to Power Grids

  • Chapter
  • First Online:
Handbook of Optimization in Complex Networks

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 58))

Abstract

In this chapter, we are concerned with robustness design in complex communication networks and power grids. We define robustness as the ability of a network to adapt to environmental variations such as traffic fluctuations, topology modifications, and changes in the source (sink) of external traffic. We present a network theory approach to the joint optimization of resources and routes in a communication network to provide robust network operation. Our main metrics are the well-known point-to-point resistance distance and network criticality (average resistance distance) of a graph. We show that some of the key performance metrics in a communication network, such as average link betweenness sensitivity or average network utilization, can be expressed as a weighted combination of point-to-point resistance distances. A case of particular interest is when the external demand is specified by a traffic matrix. We extend the notion of network criticality to be a traffic-aware metric. Traffic-aware network criticality is then a weighted linear combination of point-to-point resistance distances of the graph. For this reason, in this chapter, we focus on a weighted linear sum of resistance distances (which is a convex function of link weights) as the main metric and we discuss a variety of optimization problems to jointly assign routes and flows in a network. We provide a complete mathematical analysis of the network planning problem (optimal weight assignment), where we assume that a routing algorithm is already in place and governs the distribution of network flows. Then, we extend the analysis to a more general case involving the simultaneous optimization of resources and flows (routes) in a network. Furthermore, we briefly discuss the problems of finding the best set of demands that can be matched to a given network topology (joint optimization of resources, flows, and demands) subject to the condition that the weighted linear sum of all point-to-point resistance distances of the network should remain below a certain threshold. We discuss applications of the proposed optimization methods to the design of virtual networks. Moreover, we show how our techniques can be used in the design of robust communication networks and robust sparse power grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H.  Dekker, B. D.  Colbert. Network Robustness and Graph Topology. Australasian Computer Science Conference, vol. 26, page 359–368, January 2004.

    Google Scholar 

  2. A. H.  Dekker, B. D.  Colbert. The Symmetry Ratio of a Network. Australasian symposium on Theory of computing, ACM International Conference Proceeding Series, vol. 41, page 13–20, Newcastle, Australia, 2005.

    Google Scholar 

  3. P.  Holme, B.  Kimand, C.  Yoon, S. K.  Han. Attack vulnerability of complex networks. Physical Review, E65, 056109, 2002.

    Google Scholar 

  4. R.  Criado, J.  Flores, B.  Hernandez-Bermejo, J.  Pello, M.  Romance. Effective Measurement of Network Vulnerability Under Random and Intentional Attacks. Journal of Mathematical Modelling and Algorithms, vol. 4, pp. 307–316, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  5. R.  Zhang-Shen, N.  McKeown. Designing a Predictable Internet Backbone with Valiant Load-Balancing. Thirteenth International Workshop on Quality of Service (IWQoS), Passau, Germany, June 2005.

    Google Scholar 

  6. L.  Valiant, G.  Brebner. Universal Schemes for Parallel Communication. Thirteenth Annual Symposium on Theory of Computing, May 1981.

    Google Scholar 

  7. C. S.  Chang, D. S.  Lee, Y. S.  Jou. Load Balanced Birkhoff-von Neumann Switches, Part I: One-Stage Buffering. IEEE HPSR ’01, Dallas, May 2001.

    Google Scholar 

  8. I.  Keslassy, S. T.  Chuang, K.  Yu, D.  Miller, M.  Horowitz, O.  Solgaard, N.  McKeown. Scaling Internet Routers Using Optics. ACM SIGCOMM, Karlsruhe, Germany, 2003.

    Google Scholar 

  9. D.  Applegate, E.  Cohen. Making routing robust to changing traffic demands: algorithms and evaluation. IEEE/ACM Transactions on Networking (TON), vol. 14, no. 6, pp. 1193–1206, December 2006.

    Google Scholar 

  10. D.  Applegate, L.  Breslau, E.  Cohen. Coping with Network Failures: Routing Strategies for Optimal Demand Oblivious Restoration. ACM SIGMETRICS, New York, USA, 2004.

    Google Scholar 

  11. A. Tizghadam and A. Leon-Garcia. A Robust Routing Plan to Optimize Throughput in Core Networks. Managing Traffic Performance in Converged Networks, Lorne Mason, Tadeusz Drwiega and James Yan (Eds.), Springer, pages 117–128, 2007.

    Google Scholar 

  12. A. Tizghadam and A. Leon-Garcia. A Graph Theoretical Approach to Traffic Engineering and Network Control Problem. In 21 th International Teletraffic Congress (ITC21), Paris, France, September 2009.

    Google Scholar 

  13. L. C. Freeman. Centrality in Networks: I. Conceptual Clarification. Social Networks, (1): 215–239, 1978/79.

    Google Scholar 

  14. D.  Koschtzki, K. A.  Lehmann, L.  Peeters, S.  Richter, D.  Tenfelde-Podehl, O.  Zlotowski. Centrality Indices. Network Analysis: Methodological Foundations, U.  Brandes, T.  Erlebach (Editors), Lecture Notes in Computer Science, Springer-Verlag, vol. 3418, 2005.

    Google Scholar 

  15. L.C. Freeman, S.P. Borgatti, and D.R. White. Centrality in valued graphs: a measure of betweenness based on network flow. Social Networks, 13:141–154, 1991.

    Article  MathSciNet  Google Scholar 

  16. M. Newman. A Measure of Betweenness Centrality Based on Random Walks. Social Networks, 27:39–54, 2005.

    Article  Google Scholar 

  17. A. Tizghadam, A. Leon-Garcia. Robust Network Planning in Nonuniform Traffic Scenarios. Computer Communications, vol. 34, no. 12, pp. 1436–1449, 2011.

    Article  Google Scholar 

  18. C. R. Rao and S. K. Mitra. Generalized Inverse of Matrices and its Applications. John Weily and Sons Inc., 1971.

    Google Scholar 

  19. A. Tizghadam and A. Leon-Garcia. Autonomic Traffic Engineering for Network Robustness. IEEE Journal of Selected Areas in Communications (J-SAC), 28(1):39–50, January 2010.

    Google Scholar 

  20. A. Tizghadam and A Leon-Garcia. Survival Value of Communication Networks. In INFOCOM Workshop on Network Science for Communications (NetSciCom), pages 1–6, Rio de Janeiro, Brazil, April 2009.

    Google Scholar 

  21. A. Tizghadam and A Leon-Garcia. Betweenness Centrality and Resistance Distance in Communication Networks. In IEEE Network, vol. 24, no. 6, pages 10–16, November-December 2010.

    Google Scholar 

  22. D. J. Klein and M. Randic. Resistance Distance. Journal of Mathematical Chemistry, 12(1):81–95, December 1993.

    Article  MathSciNet  Google Scholar 

  23. A. Ghosh, S. Boyd, and A. Saberi. Minimizing Effective Resistance of a Graph. SIAM Review, problems and techniques section, 50(1):37–66, February 2008.

    MathSciNet  MATH  Google Scholar 

  24. L. Kleinrock. Queueing Systems, volume II. John Wiley & Sons, 1975.

    Google Scholar 

  25. A. H. Land and A. G.  Doig. An automatic method of solving discrete programming problems. Econometrica, vol. 28, no. 3, pages 497–520, July 1960.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Preston, S. Cotter, C. Todorov. US Optical Networking Developments in Support of US Research and Education: FiberCo, a Case Study and a Bit on Optical International Exchange Points. CESNET, Prague Czech Republic, March 2006.

    Google Scholar 

  27. G. Leduca, H. Abrahamssone, S. Balona, S. Besslerb, M. D’Arienzoh, O. Delcourta, J. Domingo-Pascuald, S. Cerav-Erbasg, I. Gojmeracb, X. Masipd, A. Pescaph, B. Quoitinf, S. P. Romanoh, E. Salvadoric, F. Skivea, H. T. Tranb, S. Uhligf, and H. Umitg. An Open Source Traffic Engineering Toolbox. Computer Communications, 29(5):593–610, March 2006.

    Article  Google Scholar 

  28. Dennis S. Bernstein. Matrix Mathematics. Princeton University Press, 2th edition, 2009.

    Google Scholar 

  29. M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming (Web Page and Software). http :  ∕ ∕ stanford. edu ∕  boyd ∕ cvx. September 2008.

    Google Scholar 

  30. M. Grant and S. Boyd. Graph Implementations for Nonsmooth Convex Programs, Recent Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel, S. Boyd, and H. Kimura, editors, http :  ∕ ∕ stanford. edu ∕  boyd ∕ graph d cp. html. Lecture Notes in Control and Information Sciences, Springer, 2008.

    Google Scholar 

  31. D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimization. Athena Scientific, April 2003.

    Google Scholar 

  32. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

    Google Scholar 

  33. L. Xiao and M. Johansson, and S.  Boyd. Simultaneous Routing and Resource Allocation via Dual Decomposition. IEEE Transactions on Communications, vol. 52, no. 7, pages 1136–1144, July 2004.

    Article  Google Scholar 

  34. A. Tizghadam and A. Leon-Garcia. On Random Walks in Direction-Aware Network Problems. ACM SIGMETRICS Performance Evaluation Review (PER), vol. 38, no. 2, pages 9–11, September 2010.

    Google Scholar 

  35. N.  Spring, R.  Mahajan, D.  Wetherall, T.  Anderson. Measuring ISP Topologies with Rocketfuel. IEEE/ACM Transactions on Networking (TON), vol. 12, no. 1, pp. 2–16, February 2004.

    Google Scholar 

  36. B.  Fortz, M.  Thorup. Increasing Internet Capacity Using Local Search. , Computational Optimization and Applications, vol. 29, pp. 13–48, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. K. Johnson, M. Chertkov. A Majorization-Minimization Approach to Design of Power Transmission Networks. arXiv:1004.2285, September 2010.

    Google Scholar 

  38. D. A. Spielman, N. Srivastava. Graph Sparsication by Effective Resistances. Proceedings of the 40th annual ACM Symposium on Theory of Computing STOC’08, pages 563–568, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tizghadam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tizghadam, A., Bigdeli, A., Leon-Garcia, A., Naser, H. (2012). Joint Optimization of Resources and Routes for Minimum Resistance: From Communication Networks to Power Grids. In: Thai, M., Pardalos, P. (eds) Handbook of Optimization in Complex Networks. Springer Optimization and Its Applications(), vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0857-4_4

Download citation

Publish with us

Policies and ethics