Skip to main content

Abstract

The processing of oilseeds and oil-bearing fruits becomes more and more important because an increasing number of people need more and more oil for human nutrition and also for technical applications. In general, three different methods for the extraction of oil are conceivable: (1) pressing, (2) extraction by solvent, and (3) a combination of pressing and extraction by solvent. The efficiency of these methods can be improved with the assistance of enzymes or carbon dioxide.

Pressing is a very old method which nowadays is most widely displaced by the use of solvent which is more efficient, especially for oilseeds with lower oil contents such as soybeans. Seeds with higher oil contents are pre-pressed before extraction by solvent. For the production of high-quality virgin oils, only pressing by a screw press and purification by sedimentation, filtration, or centrifugation is allowed.

Because of the extensive extraction process in large facilities which results in the extraction and the formation of undesired compounds in the raw oil, making it unusable for human nutrition or technical applications, a comprehensive purification by a refining process of the raw oil is inevitable.

The chapter describes the different methods of oil processing and the different requirements necessary for the production of high-quality vegetable oils in large oil mills, and also in small and medium-sized facilities. Difficulties arising from both methods are also discussed. The chapter discusses the different aspects of oil processing from the pretreatment of the raw material via extraction by pressing or solvent extraction to the purification by filtration, sedimentation, or refining. The different steps of the refining process, degumming, chemical or physical refining, bleaching, and deodorization are described. The influence of different steps of processing on the oxidative stability of the oil is the subject of the chapter. Last but not least, some process-derived contaminants formed during the refining process such as trans-fatty acids or 3-monochloropropane-1,2-diol fatty acid esters and related compounds are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalrust E, Beyer W, Ottofrickenstein H (1992) Enzymatic method for reducing the amount of phosphorous-containing components in vegetable and animal oils. Europe Patent 0,513,709

    Google Scholar 

  • Ademosun OC (1982) Mechanised production system of oil palm produce in Nigeria: a preliminary study on the establishment of location – allocation models. Agr Syst 8:193–207

    Article  Google Scholar 

  • Anonymous (2000) Monographs on the evaluation of carcinogenic risks to humans. Some industrial chemicals. IARC – World Health Organization International Agency for Research on Cancer, vol. 77, Lyon, France

    Google Scholar 

  • Anonymous (2001) Scientific Committee on food (2001). Opinion on 3-monochloro-propane-1,2-diol (3-MCPD). Updating the SCF opinion of 1994 adopted on 30 May 2001

    Google Scholar 

  • Anonymous (2003) Ergänzende toxikologische Bewertung von 3-MCPD unter besonderer Berücksichtigung der Gefährdung von Kindern. Stellungnahme des BfR vom, 9 Juli 2003

    Google Scholar 

  • Anonymous (2007) Säuglingsanfangs- und Folgenahrung kann gesundheitlich bedenkliche 3-MCPD-Fettsäureester enthalten. Statement No. 047/2007. BfR, 11 Dezember 2007

    Google Scholar 

  • Anonymous (2008) European Food Safety Authority: Statement of the Scientific Panel on Contaminants in the Food chain (CONTAM) on a request from the European Commission related to 3-MCPD esters (Question No EFSA-Q-2008-258). Adopted by written procedure on 28 March 2008

    Google Scholar 

  • Anonymous (2010) DIN fuels for vegetable oil compatible combustion engines – fuel from rapeseed oil – requirements and test methods – DIN V 51605. Beuth, Berlin 12529

    Google Scholar 

  • Arranz S, Cert R, Pérez-Jiménez J, Cert A, Saura-Calixto F (2008) Comparison between free radical scavenging capacity and oxidative stability of nut oils. Food Chem 110:985–990

    Article  CAS  Google Scholar 

  • Attenberger A, Matthäus B, Brühl L, Remmele E (2005) Research into the influencing factors on the quality of cold pressed rapeseed oil used as edible oil and determination of a quality standard. Eigenverlag, Technologie-und Förderzentrum, pp 84–91

    Google Scholar 

  • Beach CDH (1983) High and low erucic acid rapeseed oils. In: Kramer JKG, Sauer FD, Pigden WJ (eds) High and low erucic acid rapeseed oils. Academic, New York, pp 181–195

    Google Scholar 

  • Bockisch M (1993) Handbuch der Lebensmittel-Technologie Nahrungsfette und-öle. Verlag Eugen Ulmer, pp 208–215

    Google Scholar 

  • Booth EJ (2004) Extraction and refining. In: Gunstone FD (ed) Rapeseed and Canola oil – production, processing, properties and uses. Blackwell, Oxford, pp 17–36

    Google Scholar 

  • Bratkowska I, Niewiadomski H (1975) Influence of phospholipids on the rapeseed oil autoxidation process. Acta Alimentaria Pol 1:339

    CAS  Google Scholar 

  • Calta P, Velisek J, Dolezal M, Hasnip S, Crews C, Reblova Z (2004) Formation of 3-chloropropane-1,2-diol in systems simulating processed foods. Eur Food Res Technol 218:501–506

    Article  CAS  Google Scholar 

  • Carr RA (1995) Processing the seed and oil. In: Kimer D, McGregor DI (eds) Brassica oilseeds, production and utilization. CAB International, Wallingford

    Google Scholar 

  • Cercaci L, Passalacqua G, Poerio A, Rodriguez-Estrada MT, Lercker G (2007) Composition of total sterols (4-desmethyl-sterols). in extra virgin olive oils obtained with different extraction technologies and their influence on the oil oxidative stability. Food Chem 102:55–76

    Google Scholar 

  • Clausen K (2001) Enzymatic oil-degumming by a novel microbial phospholipase. Eur J Lipid Sci Technol 103:333–340

    Article  CAS  Google Scholar 

  • de Greyt WF, Kellens MJ, Huyghebaert AD (1999) Polymeric and oxidized triglyceride content of crude and refined vegetable oils – an overview. Eur J Lipid Sci Technol 99:287–290

    Google Scholar 

  • di Giovacchino L, Solinas M, Miccoli M (1994) Aspetti qualitativi e quantitativi delle produzioni olearie ottenute dala lavoraione delle olive con i differenti sistemi di estrazione. Rivista Italiana Sostanze Grasse 71:587–594

    Google Scholar 

  • Dobarganes MC, Perez-Camino MC, Marquez-Ruiz G (1989) Application of minor glyceridic component determination to the evaluation of olive oils. In: Abstracts of papers, premier congrès Eurolid, Angers. Association Francaise pour l’Etude des Corps Gras, Paris, pp 578–584

    Google Scholar 

  • Dominquez H, Nuenz MJ, Lema JM (1993) Oil extractability from enzymatically treated soybean and sunflower: range of operational variables. Food Chem 46:277–284

    Article  Google Scholar 

  • Eggers R (2008) Innovative Verfahrensansätze in der Speiseölprozesstechnik. Chemie Ingenieur Technik 80:1059–1068

    Article  CAS  Google Scholar 

  • Farhoosh R, Einafshar S, Sharayei P (2009) The effect of commercial refining steps on the rancidity measures of soybean and canola oil. Food Chem 115:933–938

    Article  CAS  Google Scholar 

  • Ferrari RAp, Schulte E, Esteves W, Brühl L, Mukherjee KD (1996) Minor constituents of vegetable oils during industrial processing. J Am Oil Chem Soc 73:587–592

    Article  CAS  Google Scholar 

  • Fullbrook PD (1983) The use of enzymes in the processing of oilseeds. J Am Oil Chem Soc 60:476–478

    Article  Google Scholar 

  • Going LH (1967) Interesterification products and processes. J Am Oil Chem Soc 44:414A–456A

    Article  Google Scholar 

  • Going LH (1968) Oxidative deterioration of partially processed soybean oil. J Am Oil Chem Soc 45:632–634

    Article  CAS  Google Scholar 

  • Gomes T, Catalano M (1988) Quality characters of edible oils. Dimeric triglycerides. Rivista Italiana Sostanze Grasse 65:125–127

    CAS  Google Scholar 

  • Gomes T, Caponio F, Delcuratolo D (2003) Fate of oxidized triglycerides during refining of seed oils. J Agr Food Chem 51:4647–4651

    Article  CAS  Google Scholar 

  • Gopala Krishna AG, Sakina K, Shiela PM, Sarmandal CV, Indira TN, Mishra A (2001) Effect of refining of crude oil on retention of oryzanol in refined rice bran oil. J Am Oil Chem Soc 78:127–131

    Google Scholar 

  • Gordon MH, Rahman IA (1991) Effect of processing on the composition and oxidative stability of coconut oil. J Am Oil Chem Soc 68:574–576

    Article  CAS  Google Scholar 

  • Gupta MK (1994) Improvement of soybean flavor through processing. Presented at the 84th annual meeting of the American Oil Chemists’ Society, Atlanta, GA

    Google Scholar 

  • Gupta MK (2000) Oil quality improvement through processing. In: O’Brien RD, Farr WE, Wan PJ (eds) Introduction to fats and oils technology, 2nd edn. American Oil Chemists’ Society, Champaign, IL, pp 371–382

    Google Scholar 

  • Gutfinger T (1981) Polyphenols in olive virgin oils. J Am Oil Chem Soc 58:966–968

    Article  CAS  Google Scholar 

  • Hamlet CG, Sadd PA, Gray DA (2004a) Generation of monochloropropanediols (MCPDs) in model dough systems. 1. Leavened doughs. J Agr Food Chem 52:2059–2066

    Article  CAS  Google Scholar 

  • Hamlet CG, Sadd PA, Gray DA (2004b) Generation of monochloropropanediols (MCPDs) in model dough systems. 2. Unleavened doughs. J Agr Food Chem 52:2067–2072

    Article  CAS  Google Scholar 

  • Hildebrand DH, Terao J, Kito M (1984) Phospholipids plus tocopherols increase soybean oil stability. J Am Oil Chem Soc 61:552–555

    Article  CAS  Google Scholar 

  • Jawad IM, Kochhar SP, Hudson BJF (1983) Quality characteristics of physically refined soyabean oil: effects of pre-treatment and processing time and temperature. J Food Technol 18:4353–4360

    Google Scholar 

  • Jung MY, Yoon SH, Min DB (1989) Effects of processing steps on the contents of minor compounds and oxidation of soybean oil. J Am Oil Chem Soc 66:118–120

    Article  Google Scholar 

  • King RR, Wharton FW (1949) Oxidation effects in adsorption bleaching of vegetable oils. J Am Oil Chem Soc 26:201–207

    Article  CAS  Google Scholar 

  • Klaus D (1998) An enzymatic process for the physical refining of seed oils. Chem Eng Technol 21:3–6

    Google Scholar 

  • Kock M (1981) Practical experience with a process for enzyme deactivation of soybean flakes before extraction and its influence on the oil quality. American Soybean Association Congress, Antwerpen

    Google Scholar 

  • Kwon TW, Brown HG (1984) Oxidative stability of soybean oil at different stages of refining. J Am Oil Chem Soc 61:1843–1846

    Article  CAS  Google Scholar 

  • Lanzani A, Petrini MC, Cozzoli O, Gallavresi P, Carola C, Jacini G (1975) On the use of enzymes for vegetable-oil extraction. A preliminary report. Rivista Italiana Sostanze Grasse 52:226–229

    CAS  Google Scholar 

  • Lee SW, Jeung MK, Park MH, Lee SY, Lee J (2009) Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chemisty 118:681–685

    Article  Google Scholar 

  • Linow F, Mieth G (1976) The fat-stabilizing properties of phosphatides. III: the synergistic action of selected phosphatides. Die Nahrung 20:19–24

    Article  PubMed  CAS  Google Scholar 

  • List GR, Mounts TL, Orthoefer F, Neff WE (1995) Margarine and shortening oils by intesterification of liquid and trisaturated triglycerides. J Am Oil Chem Soc 72:379–382

    Article  CAS  Google Scholar 

  • Mag T (2001) Canola seed and oil processing. Canola Council of Canada. http://www.canola-council.org

  • Matthäus B (1998) Effect of dehulling on the composition of antinutritive compounds in various cultivars of rapeseed. Fett/Lipid 100:295–301

    Article  Google Scholar 

  • Matthäus B (2008) Virgin grape seed oil: Is it really a nutritional highlight? Eur J Lipid Sci Technol 110:645–650

    Article  Google Scholar 

  • Mezouari S, Eichner K (2007) Comparative study on the stability of crude and refined rice bran oil during long-term storage at room temperature. Eur J Lipid Sci Technol 109:198–205

    Article  CAS  Google Scholar 

  • Milligan ED, Suriano JF (1974) System for production of high and low protein dispersibility index edible extracted soybean flakes. J Am Oil Chem Soc 51:158–161

    Article  CAS  Google Scholar 

  • Morrison WH (1975) Effects of refining and bleaching on oxidative stability of sunflowerseed oil. J Am Oil Chem Soc 52:552–525

    Article  Google Scholar 

  • Narayana T, Kaimal B, Vail SR, Surya BV, Rao K, Chakrabarti PP, Vijayalakshmi P, Kale V, Narayana K, Ran P, Rajamm IO, Bhaskar PS, Rao TC (2002) Origin of problems encountered in rice bran oil processing. Eur J Lipid Sci Technol 104:203–211

    Article  CAS  Google Scholar 

  • Niewiadomski H (1990) Preliminary technological operations. In: Niewiadomski H (ed) Rapeseed – chemistry and technology. Elsevier, Amsterdam, pp 123–160

    Google Scholar 

  • Ohlsen R, Svensson C (1976) Comparison of oxalic acid and phosphoric acid as degumming agents for vegetable oils. J Am Oil Chem Soc 53:8–11

    Article  Google Scholar 

  • Pekkarinen S, Hopia A, Heinonen M (1998) Effect of processing on the oxidative stability of low erucic acid turnip rapeseed (Brassica rapa) oil. Fett/Lipid 100:69–74

    Article  CAS  Google Scholar 

  • Piva G, Pietri A, Maccagni A, Santi E (1985) Fattori antinutrizionali della farina di estrazione di colza. La rivista Italiana delle sostanze grasse 62:99–103

    CAS  Google Scholar 

  • Poku K (2002) Small-scale palm oil processing in Africa. FAO Agricultural Servies Bulletin 148. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Precht D, Molkentin J (1995) Trans fatty acids: implications for health, analytical methods, incidence in edible fats and intake. Die Nahrung 39:343–374

    Article  PubMed  CAS  Google Scholar 

  • Prior EM, Vadke VS, Sosulski FW (1991) Effect of heat treatments on Canola Press Oils. II. Oxidative stability. J Am Oil Chem Soc 68:407–411

    Article  CAS  Google Scholar 

  • Ramamurthi S, McCurdy AR, Tyler RT (1998) Deodorizer distillate: a valuable byproduct. In: Koseoglu SS, Rhee KC, Wilson RF (eds) Proceedings of world conference on oilseed edible oils process. AOCS, Champaign, IL, pp 130–134

    Google Scholar 

  • Robjohns S, Marshall R, Fellows M, Kowalczyk G (2003) In vivo genotoxicity studies with 3-monochloropropan-1,2-diol. Mutagenesis 18:401–404

    Article  PubMed  CAS  Google Scholar 

  • Roth L, Kormann K (2000) Ölpflanzen–Pflanzenöle, 1. Aufl., Landsberg/Lech, ecomed Verlagsgesellschaft AG & Co. KG

    Google Scholar 

  • Rutkowski A (1961) The effect of pressing, extraction, neutralization and bleaching on the stability of rapeseed oil. Roczn Techn Chem Zywn 7:19

    Google Scholar 

  • Satue MT, Huang S-W, Frankel EN (1995) Effect of natural antioxidants in virgin olive oil on oxidative stability of refined, bleached and deodorized olive oil. J Am Oil Chem Soc 72:1131–1137

    Article  CAS  Google Scholar 

  • Schneider FH (1979a) Schälung von Rapssaat durch definierte Verformung. I. Untersuchungen zur Saatanatomie. Fette Seifen Anstrichmittel 81:11–16

    Article  Google Scholar 

  • Schneider FH (1979b) Schälung von Rapssaat durch definierte Verformung. II. Untersuchungen zum Schalverhalten. Fette Seifen Anstrichmittel 81:53–59

    Article  Google Scholar 

  • Schneider FH, Khoo D (1986) Trennpressen – Versuch einer Bestandsaufnahme experimenteller Arbeiten. Fette, Seifen, Anstrichmittel 88:329–340

    Article  Google Scholar 

  • Schumann W (2005) Glucosinolatgehalt von in Deutschland erzeugten und verarbeiteten Rapssaaten und Rapsfuttermitteln. UFOP, pp 1–69

    Google Scholar 

  • Schumann W, Graf T. (2005) Anforderungen an die Rapssaat im Hinblick auf Qualitätsoptimierung. In: Dezentrale Ölsaatenverarbeitung, KTBL-Schrift 427, Landwirtschaftsverlag GmbH, Münster

    Google Scholar 

  • Sciancalepore V, de Stefano G, Piacquadio P (2000) Effects of the cold percolation system on the quality of virgin olive oil. Eur J Lipid Sci Technol 102:680–683

    Article  CAS  Google Scholar 

  • Seefelder W, Schilter B (2009) Summary report and presentations of ILSI Workshop held in February 2009 on 3-MCPD esters in food products, Brussels, Belgium. http://www.ilsi.org/europe/publications/finalversion3mcpdesters.pdf. Accessed May 2009

  • Seneviratne KN, Hapuarachchl CD, Ekanayake S (2009) Comparison of the phenolic-dependent antioxidant properties of coconut oil extracted under cold and hot conditions. Food Chem 114:1444–1449

    Article  CAS  Google Scholar 

  • Shahidi F, Hamam F, Khan A (2005) Importance of non-triacylglycerols to flavour quality of edible oils. In: Weenen H, Shahidi F (eds) Chemistry, flavor and texture of lipid-containing foods, ACS Symposium Series No. 920. ACS, Washington, DC, pp 3–16

    Chapter  Google Scholar 

  • Sinolea (1991) European Patent No. 0252025®, Munich, 2 Jan 1991. Property of Rapanelli Co., Foligno, Italy

    Google Scholar 

  • Sosulski K, Sosulski WF (1993) Enzyme-aided vs. two-stage processing of canola: technology, product quality and cost evaluation. J Am Oil Chem Soc 70:825–829

    Article  CAS  Google Scholar 

  • Sosulski K, Sosulski WF, Coxworth E (1988) Carbohydrase hydrolysis of canola to enhance oil extraction with hexane. J Am Oil Chem Soc 65:357–361

    Article  CAS  Google Scholar 

  • Stender S, Dyerberg J, Holmer G, Ovesen L, Sandström B (1995) The influence of trans fatty acids on health: a report from The Danish Nutrition Council. Clin Sci 88:375–392

    PubMed  CAS  Google Scholar 

  • Unger EH (1990) Commercial processing of canola and rapeseed: crushing and oil extraction. In: Shahid F (ed) Canola and rapeseed, production, chemistry, nutrition, and processing technology. van Nostrand Reinhold, New York, pp 235–249

    Google Scholar 

  • Vavlitis A, Milligan ED (1993) Flash desolventizings. In: Proceedings of the world conference on oilseed technology and utilization. AOCS, Champaign, IL, pp 286–289

    Google Scholar 

  • Velisek J, Calta P, Crews C, Hasnip S, Dolezal M (2003) 3-Chloropropane-1,2-diol in models simulating processed foods: Precursors and agents causing its decomposition. Czech J Food Sci 21:153–161

    CAS  Google Scholar 

  • Voges S, Eggers R, Pietsch A (2007) Gas assisted oilseed pressing. Separ Purif Tech 63:1–14

    Article  Google Scholar 

  • Weisshaar R (2008) 3-MCPD-esters in edible fats and oils – a new and worldwide problem. Eur J Lipid Sci Technol 110:671–672

    Article  CAS  Google Scholar 

  • Weisshaar R, Perz R (2010) Fatty acid esters of glycidol in refined fats and oils. Eur J Lipid Sci Technol 112:158–165

    Article  CAS  Google Scholar 

  • Wijesundera C, Ceccato C, Fagan P, Shen Z (2008) Seed roasting improves the oxidative stability of canola (B. napus) and mustard (B. juncea) seed oils. Eur J Lipid Sci Technol 110:360–367

    Article  CAS  Google Scholar 

  • Yoon SH, Kim SK (1994) Oxidative stability of high-fatty acid rice bran oil at different stages of refining. J Am Oil Chem Soc 71:227–229

    Article  CAS  Google Scholar 

  • Young FVK, Poot C, Poot C, Biernoth E, Biernoth E, Krog N, Davidson NGJ, Davidson NG, Gunstone FD (1994) Processing of fats and oils. In: Gunstone FD, Harwood JL, Padley FB, Padley FB (eds) The lipid handbook, 2nd edn. Chapman & Hall, London, pp 249–318

    Google Scholar 

  • Zacchi P, Eggers R (2008) High-temperature pre-conditioning of rapeseed: a polyphenol-enriched oil and the effect of refining. Eur J Lipid Sci Technol 110:111–119

    Article  CAS  Google Scholar 

  • Zelinkova Z, Svejkovska B, Velisek J, Dolezal M (2006) Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit Contam 23:1290–1298

    Article  PubMed  CAS  Google Scholar 

  • Zschau W (1999) Die Bleichung von Speisefetten und Ölen VII. Qualitätskontrolle der Bleichung. Fett/Lipid 101:117–119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Matthäus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Matthäus, B. (2012). Oil Technology. In: Gupta, S. (eds) Technological Innovations in Major World Oil Crops, Volume 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0827-7_2

Download citation

Publish with us

Policies and ethics