Future Perspectives



Most oil crops have experienced an increase in their production higher than 20% from 1998 to 2008. The generation of new variability by the genetic transformation of elite cultivars with improved characteristics product of prolonged breeding strategies has been exploited in oil crops. The availability of molecular markers and public genetic databases, virtually in all the important oil crops, makes it possible to tackle a marker-assisted selection (MAS) approach routinely in many breeding programmes. An intensive work in QTL mapping of yield and quality traits in several oil crops, like Brassicas, soya bean, sunflower, oil palm and cotton, has been carried out. As a consequence, candidate genes associated with traits of interest have already been identified in Brassica juncea L. and sunflower. The integration of gene expression information and genotypes for different molecular markers to map expression QTLs (eQTLs) could lead to the identification of regulatory elements, enabling the modulation of genes responsible for agronomic traits of interest. Furthermore, the design of artificial miRNAs (amiRNAs) to target the inhibition of specific plant genes is already possible.


Genetic transformation Molecular markers Marker-assisted ­selection QTL mapping Expression QTLs (eQTLs) Oil crops Artificial microRNAs (amiRNAs) 


  1. AAFC Brassica/Arabidopsis Comparative Genome Viewer (2005)
  2. Abou Alfadil T, Kiani SP, Dechamp-Guillaume G, Gentzbittel L, Sarrafi A (2007) QTL mapping of partial resistance to Phoma basal stem and root necrosis in sunflower (Helianthus annuus L.). Plant Sci 172:815–823Google Scholar
  3. ACPFG Bioinformatics TAGdb (2010)
  4. Amar S, Ecke W, Becker HC, Mollers C (2008) QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes. Theor Appl Genet 116:1051–1061Google Scholar
  5. An CF, Jenkins JN, Wu JX, Guo YF, McCarty JC (2010) Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton. Euphytica 172:21–34CrossRefGoogle Scholar
  6. Bachlava E, Dewey RE, Auclair J, Wang S, Burton JW, Cardinal AJ (2008) Mapping genes encoding microsomal ω-6 desaturase enzymes and their cosegregation with QTL affecting oleate content in soybean. Crop Sci 48:640–650CrossRefGoogle Scholar
  7. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedCrossRefGoogle Scholar
  8. Bert PF, Jouan I, de Labrouhe DT, Serre F, Philippon J, Nicolas P, Vear F (2003) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.). 2. Characterisation of QTL involved in developmental and agronomic traits. Theor Appl Genet 107:181–189PubMedGoogle Scholar
  9. Billotte N, Jourjon MF, Marseillac N, Berger A, Flori A, Asmady H, Adon B, Singh R, Nouy B, Potier F, Cheah SC, Rohde W, Ritter E, Courtois B, Charrier A, Mangin B (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–1687PubMedCrossRefGoogle Scholar
  10. Bolon YT, Joseph B, Cannon SB, Graham MA, Diers BW, Farmer AD, May GD, Muehlbauer GJ, Specht JE, Tu ZJ, Weeks N, Xu WW, Shoemaker RC, Vance CP (2010) Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biol 10:41PubMedCrossRefGoogle Scholar
  11. Brassica Genome Gateway (2010)
  12. Brummer EC, Graef GL, Orf J, Wilcox JR, Shoemaker RC (1997) Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci 37:370–378CrossRefGoogle Scholar
  13. Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity 90:39–48PubMedCrossRefGoogle Scholar
  14. Castor Bean Genome Database (2010)
  15. Chen W, Zhang Y, Liu XP, Chen BY, Tu JX, Fu TD (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F-2 populations. Theor Appl Genet 115:849–858PubMedCrossRefGoogle Scholar
  16. Chung J, Babka HL, Graef GL, Staswick PE, Lee DJ, Cregan PB, Shoemaker RC, Specht JE (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43:1053–1067CrossRefGoogle Scholar
  17. Clive J (2007) Global status of commercialized biotech/GM crops: 2007. ISAAA Brief No. 37. ISAAA, Ithaca, NYGoogle Scholar
  18. Compositae Genome Initiative Database (2003)
  19. Cotton Genome Database (2009)
  20. Cotton Marker Database (2010)
  21. Ebrahimi A, Maury P, Berger M, Kiani SP, Nabipour A, Shariati F, Grieu P, Sarrafi A (2008) QTL mapping of seed-quality traits in sunflower recombinant inbred lines under different water regimes. Genome 51:599–615PubMedCrossRefGoogle Scholar
  22. Ebrahimi A, Maury P, Berger M, Calmon A, Grieu P, Sarrafi A (2009) QTL mapping of protein content and seed characteristics under water-stress conditions in sunflower. Genome 52:419–430PubMedCrossRefGoogle Scholar
  23. FAOSTAT (2010)
  24. Brassica rapa Genome DB (2010)
  25. Brassica rapa Genome Project (2010)
  26. Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2004) Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet 108:743–749PubMedCrossRefGoogle Scholar
  27. Han YP, Teng WL, Sun DS, Du YP, Qiu LJ, Xu XL, Li WB (2008) Impact of epistasis and QTL  ×  environment interaction on the accumulation of seed mass of soybean (Glycine max L. Merr.). Genet Res 90:481–491CrossRefGoogle Scholar
  28. He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197CrossRefGoogle Scholar
  29. Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR, Schmidt ME (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109:552–561PubMedCrossRefGoogle Scholar
  30. IMSORB: Integrated Marker System for Oilseed Rape Breeding (2007)
  31. Istrian Olive Database (2005)
  32. Jiang F, Zhao J, Zhou L, Guo WZ, Zhang TZ (2009) Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in upland cotton. Sci China C Life Sci 52:872–884PubMedCrossRefGoogle Scholar
  33. Jun TH, Van K, Kim MY, Lee SH, Walker DR (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162:179–191CrossRefGoogle Scholar
  34. Luan M, Guo X, Zhang Y, Yao J, Chen W (2009) QTL mapping for agronomic and fibre traits using two interspecific chromosome substitution lines of Upland cotton. Plant Breed 128:671–679CrossRefGoogle Scholar
  35. Ma XX, Ding YZ, Zhou BL, Guo WZ, Lu YH, Zhu XF, Zhang TZ (2008) QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium. J Genet Genomics 35:751–762PubMedCrossRefGoogle Scholar
  36. Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG (2006) Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet 113:1211–1220PubMedCrossRefGoogle Scholar
  37. Maize Assembled Genomic Island (2010)
  38. Maize Genome Mapping Project (2007)
  39. Maize Mapping Project (2005)
  40. Nichols DM, Glover KD, Carlson SR, Specht JE, Diers BW (2006) Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci 46:834–839CrossRefGoogle Scholar
  41. Oil palm SNP database (2008)
  42. Olea databases (2008)
  43. Olea EST database (2010)
  44. Palomeque L, Liu LJ, Li WB, Hedges B, Cober ER, Rajcan I (2009) QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted × high-yielding exotic soybean lines. Theor Appl Genet 119:429–436PubMedCrossRefGoogle Scholar
  45. Panthee DR, Pantalone VR, Saxton AM (2006) Modifier QTL for fatty acid composition in soybean oil. Euphytica 152:67–73CrossRefGoogle Scholar
  46. Perez-Vich B, Knapp SJ, Leon AJ, Fernandez-Martinez JM, Berry ST (2004) Mapping minor QTL for increased stearic acid content in sunflower seed oil. Mol Breed 13:313–322CrossRefGoogle Scholar
  47. Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2007) Mapping of yield influencing QTL in Brassica juncea: implications for reeding of a major oilseed crop of dryland areas. Theor Appl Genet 115:807–817PubMedCrossRefGoogle Scholar
  48. Reinprecht Y, Poysa VW, Yu KF, Rajcan I, Ablett GR, Pauls KP (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49:1510–1527PubMedCrossRefGoogle Scholar
  49. Shearin ZP, Finnerty SL, Wood ED, Hussey RS, Boerma HR (2009) A Southern root-knot nematode resistance QTL linked to the T-locus in soybean. Crop Sci 49:467–472CrossRefGoogle Scholar
  50. Shen XL, Van Becelaere G, Kumar P, Davis RF, May OL, Chee P (2006a) QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theor Appl Genet 113:1539–1549PubMedCrossRefGoogle Scholar
  51. Shen XL, Zhang TZ, Guo WZ, Zhu XF, Zhang XY (2006b) Mapping fiber and yield QTLs with main, epistatic, and QTL  ×  environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci 46:61–66CrossRefGoogle Scholar
  52. Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lübberstedt T (2007) Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint  ×  Flint maize recombinant inbred line population. BMC Genomics 8:22PubMedCrossRefGoogle Scholar
  53. Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LCL, Low ETL, Sharma M, Jansen J, Cheah SC (2009) Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm. BMC Plant Biol 9:114PubMedCrossRefGoogle Scholar
  54. Soares TC, Good-God PIV, de Miranda FD, Soares YJB, Schuster I, Piovesan ND, de Barros EG, Moreira MA (2008) QTL mapping for protein content in soybean cultivated in two tropical environments. Pesq Agropec Bras 43:1533–1541CrossRefGoogle Scholar
  55. SoyBase (2010)
  56. Soybean Genome (2005)
  57. Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509CrossRefGoogle Scholar
  58. Sunflower CMap Database (2010)
  59. The Cotton Diversity Database (2010)
  60. The Maize Genetics and Genomics Database (2010)
  61. Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829PubMedCrossRefGoogle Scholar
  62. WMD3-Web MicroRNA Designer (2009)
  63. Wu JX, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2009) Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica 165:231–245CrossRefGoogle Scholar
  64. Yan XY, Li JN, Fu FY, Jin MY, Chen L, Liu LZ (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170:355–364CrossRefGoogle Scholar
  65. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar
  66. Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Instituto de Biología Molecular y Celular de Plantas (IBMCP)-CSICUniversidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Ingeniero Fausto ElioValenciaSpain

Personalised recommendations