NBTI and Its Effect on SRAM

  • Jawar Singh
  • Saraju P. Mohanty
  • Dhiraj K. Pradhan


In this chapter, modelling of Negative Bias Temperature Instability (NBTI), how it is incorporated with Static Random Access Memory (SRAM) and its impact on different SRAM cache configurations is presented. Investigations of how NBTI affects different power saving cache strategies employing the standard symmetric and asymmetric 6-transistor (6T) SRAM, and the isolated read-port 6T SRAM bitcells, are presented. It is observed that more than 38–66% of the recovery in stability parameters (SNM and WNM) under different power saving cache strategies have been achieved for different SRAM bitcells based cache configurations. It is also found that the low V TH transistors age faster than the high V TH transistors due to NBTI. Hence, NBTI effect is more pronounced in future technologies due to reduction in V TH with technology scaling. Also NBTI effect is more significant at higher temperature.


Duty Cycle Threshold Voltage PMOS Transistor Static Random Access Memory Technology Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    Alam, M.A., Mahapatra, S.: A comprehensive model of PMOS NBTI degra-dation. Microelectron. Reliab. 45(1), 71–81 (2005). doi: 10.1016/j.microrel.2004.03.019. 2e0
  2. 8.
    Azizi, N., Najm, F., Moshovos, A.: Low-leakage asymmetric-cell SRAM. IEEE Trans. Very Large Scale Integr. Syst. 11(4), 701–715 (2003). doi: 10.1109/TVLSI.2003.816139 CrossRefGoogle Scholar
  3. 9.
    Ball, M., Rosal, J., McKee, R., Loh, W., Houston, T., Garcia, R., Raval, J., Li, D., Hollingsworth, R., Gury, R., Eklund, R., Vaccani, J., Castellano, B., Piacibello, F., Ashburn, S., Tsao, A., Krishnan, A., Ondrusek, J., Anderson, T.: A screening methodology for VMIN drift in SRAM arrays with application to sub-65 nm nodes. In: International Electron Devices Meeting, 2006. IEDM ’06, pp. 1–4 (2006). doi: 10.1109/IEDM.2006.346883
  4. 10.
    Bhavnagarwala, A.J., Tang, X., Meindl, J.D.: The impact of intrinsic device fluctuations on CMOS SRAM cell stability. IEEE J. Solid-State Circuit 36, 658–665 (2001)CrossRefGoogle Scholar
  5. 17.
    Calhoun, B., Chandrakasan, A.: Static noise margin variation for sub-threshold SRAM in 65-nm CMOS. IEEE J. Solid-State Circuit 41(7), 1673–1679 (2006). doi: 10.1109/JSSC.2006.873215 CrossRefGoogle Scholar
  6. 21.
    Chang, Y.J., Lai, F.: Dynamic zero-sensitivity scheme for low-power cache memories. IEEE Micro 25(4), 20–32 (2005). doi: 10.1109/MM.2005.64 CrossRefGoogle Scholar
  7. 25.
    Chang, L., Montoye, R., Nakamura, Y., Batson, K., Eickemeyer, R., Dennard, R., Haensch, W., Jamsek, D.: An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches. IEEE J. Solid-State Circuit 43(4), 956–963 (2008)CrossRefGoogle Scholar
  8. 26.
    Chen, G., Shetty, R., Kandemir, M., Vijaykrishnan, N., Irwin, M., Wolczko, M.: Tuning garbage collection in an embedded java environment. In: Proceedings of the Eighth International Symposium on High-Performance Computer Architecture, 2002, Cambridge, pp. 92–103 (2002)Google Scholar
  9. 27.
    Chen, G., Chuah, K., Li, M., Chan, D., Ang, C., Zheng, J., Jin, Y., Kwong, D.: Dynamic NBTI of PMOS transistors and its impact on device lifetime. In: IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual, Dallas, pp. 196–202 (2003)Google Scholar
  10. 35.
    Grossar, E., Stucchi, M., Maex, K., Dehaene, W.: Read stability and write-ability analysis of SRAM cells for nanometer technologies. IEEE J. Solid-State Circuit 41(11), 2577–2588 (2006). doi: 10.1109/JSSC.2006.883344 CrossRefGoogle Scholar
  11. 48.
    ITRS: International technology road map for semiconductors, test and test equipments. (2006)
  12. 49.
    Kaffashian, M.H., Lotfi, R., Mafinezhad, K., Mahmoodi, H.: Impact of NBTI on performance of domino logic circuits in nano-scale CMOS. Microelectron. J. 42(12), 1327–1334 (2011). doi: 10.1016/j.mejo.2011.09.009.
  13. 50.
    Kang, K., Kufluoglu, H., Alain, M., Roy, K.: Efficient transistor-level sizing technique under temporal performance degradation due to NBTI. In: International Conference on Computer Design, 2006. ICCD 2006, pp. 216–221 (2006). doi: 10.1109/ICCD.2006.4380820
  14. 54.
    Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: exploiting generational behavior to reduce cache leakage power. In: Proceedings of the 28th Annual International Symposium on Computer Architecture, 2001, pp. 240–251 (2001). doi: 10.1109/ISCA.2001.937453
  15. 60.
    Kimizuka, N., Yamamoto, T., Mogami, T., Yamaguchi, K., Imai, K., Horiuchi, T.: The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on mosfet scaling. In: Symposium on VLSI Technology, 1999. Digest of Technical Papers, pp. 73–74 (1999). doi: 10.1109/VLSIT.1999.799346
  16. 62.
    Krishnan, A., Reddy, V., Chakravarthi, S., Rodriguez, J., John, S., Krishnan, S.: NBTI impact on transistor and circuit: models, mechanisms and scaling effects [MOSFETS]. In: IEEE International Electron Devices Meeting, 2003, IEDM ’03 Technical Digest, pp. 14.5.1–14.5.4 (2003). doi: 10.1109/IEDM.2003.1269296
  17. 64.
    Kumar, S., Kim, K., Sapatnekar, S.: Impact of nbti on SRAM read stability and design for reliability. In: 7th International Symposium on Quality Electronic Design, 2006. ISQED ’06, pp. 6–218 (2006). doi: 10.1109/ISQED.2006.73
  18. 65.
    La Rosa, G., Ng, W.L., Rauch, S., Wong, R., Sudijono, J.: Impact of nbti induced statistical variation to SRAM cell stability. In: IEEE International Reliability Physics Symposium Proceedings 2006, 44th Annual, pp. 274–282 (2006). doi: 10.1109/RELPHY.2006.251228
  19. 69.
    Li, L., Kadayif, I., Tsai, Y.F., Vijaykrishnan, N., Kandemir, M., Irwin, M., Sivasubramaniam, A.: Leakage energy management in cache hierarchies. In: Proceedings of the International Conference on Parallel Architectures and Compilation Techniques, 2002, pp. 131–140 (2002). doi: 10.1109/PACT.2002.1106012 CrossRefGoogle Scholar
  20. 70.
    Li, L., Kadayif, I., Tsai, Y.F., Narayanan, V., Kandemir, M., Irwin, M.J., Sivasubramaniam, A.: Managing leakage energy in cache hierarchies. J. Instruction-Level Parallel. 5, 1–24 (2003)MATHGoogle Scholar
  21. 71.
    Li, X., Qin, J., Huang, B., Zhang, X., Bernstein, J.: SRAM circuit-failure modeling and reliability simulation with spice. IEEE Trans. Device Mater. Reliab. 6(2), 235–246 (2006). doi: 10.1109/TDMR.2006.876568 CrossRefGoogle Scholar
  22. 74.
    Mahapatra, S., Kumar, P., Alam, M.: Investigation and modeling of interface and bulk trap generation during negative bias temperature instability of p-MOSFETS. IEEE Trans. Electron Devices 51(9), 1371–1379 (2004). doi: 10.1109/TED.2004.833592 CrossRefGoogle Scholar
  23. 81.
    Moshovos, A., Falsafi, B., Najm, F., Azizi, N.: A case for asymmetric-cell cache memories. IEEE Trans. Very Large Scale Integr. Syst. 13(7), 877–881 (2005). doi: 10.1109/TVLSI.2005.850127 CrossRefGoogle Scholar
  24. 82.
    Mukhopadhyay, S., Mahmoodi, H., Roy, K.: Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS. IEEE Trans. Comput. Aided Des. Integr. Circuit Syst. 24(12), 1859–1880 (2005). doi: 10.1109/TCAD.2005.852295 CrossRefGoogle Scholar
  25. 87.
    Paul, B., Kang, K., Kufluoglu, H., Alam, M., Roy, K.: Impact of nbti on the temporal performance degradation of digital circuits. IEEE Electron Device Lett. 26(8), 560–562 (2005). doi: 10.1109/LED.2005.852523 CrossRefGoogle Scholar
  26. 88.
    PTM: Predictive technology model. In: Nanoscale Integration and Modeling (NIMO) Group. Arizona State University, Arizona. (2008)
  27. 90.
    Reddy, V., Krishnan, A., Marshall, A., Rodriguez, J., Natarajan, S., Rost, T., Krishnan, S.: Impact of negative bias temperature instability on digital circuit reliability. In: 40th Annual, Reliability Physics Symposium Proceedings, 2002, pp. 248–254 (2002). doi: 10.1109/RELPHY.2002.996644
  28. 91.
    Ricketts, A., Singh, J., Ramakrishnan, K., Vijaykrishnan, N., Pradhan, D.: Investigating the impact of nbti on different power saving cache strategies. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2010, pp. 592–597 (2010).
  29. 93.
    Schroder, D.K., Babcock, J.A.: Negative bias temperature instability: road to cross in deep submicron silicon semiconductor manufacturing. J. Appl. Phys. 94(1), 1–18 (2003). doi: 10.1063/1.1567461. Google Scholar
  30. 95.
    Seevinck, E., List, F., Lohstroh, J.: Static-noise margin analysis of MOS SRAM cells. IEEE J. Solid-State Circuit 22(5), 748–754 (1987)CrossRefGoogle Scholar
  31. 98.
    Singh, J., Pradhan, D.K., Hollis, S., Mohanty, S.P., Mathew, J.: Single ended 6T SRAM with isolated read-port for low-power embedded systems. In: Design, Automation and Test in Europe Conference and Exhibition, 2009. DATE ’09 (2009)
  32. 106.
    van der Meer, P., van Staveren, A., van Roermund, A.: Ultra-low standby-currents for deep sub-micron vlsi CMOS circuits: smart series switch. In: Proceedings of the ISCAS 2000 Geneva, Circuits and Systems the 2000 IEEE International Symposium on, vol. 4, pp. 1–4 (2000). doi: 10.1109/ISCAS.2000.858673
  33. 107.
    Vattikonda, R., Wang, W., Cao, Y.: Modeling and minimization of PMOS NBTI effect for robust nanometer design. In: ACM/IEEE 43rd Design Automation Conference, 2006, pp. 1047–1052 (2006).doi: 10.1109/DAC.2006.229436
  34. 108.
    Verma, N., Chandrakasan, A.P.: A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J. Solid-State Circuit 43(1), 141–149 (2008)CrossRefGoogle Scholar
  35. 115.
    Wittmann, R., Puchner, H., Ceric, H., Selberherr, S.: Impact of random bit values on nbti lifetime of an SRAM cell. In: 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits, 2006, pp. 41–44 (2006). doi: 10.1109/IPFA.2006.250993
  36. 118.
    Yang, S., Powell, M., Falsafi, B., Roy, K., Vijaykumar, T.: An integrated circuit/architecture approach to reducing leakage in deep-submicron high-performance i-caches. In: The 7th International Symposium on High-Performance Computer Architecture, HPCA. 2001, pp. 147–157 (2001). doi: 10.1109/HPCA.2001.903259
  37. 124.
    Zhao, W., Cao, Y.: New generation of predictive technology model for sub-45 nm design exploration. In: 7th International Symposium on Quality Electronic Design, 2006, ISQED ’06, San Jose, p. 6, p. 590 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jawar Singh
    • 1
  • Saraju P. Mohanty
    • 2
  • Dhiraj K. Pradhan
    • 3
  1. 1.Indian Institute of Information Technology Design and ManufacturingJabalpurIndia
  2. 2.University of North TexasDentonUSA
  3. 3.University of BristolBristolUK

Personalised recommendations