Skip to main content

Low-Power Spin Devices

  • Chapter
  • First Online:
Book cover Green Computing with Emerging Memory
  • 888 Accesses

Abstract

The spin of an electron is the elementary microscopic building block of magnets which in current microelectronic technologies are utilized for information storage and retrieval. A new area of technology has been emerging recently that makes use of the natures of electrons, spin, and the fundamental electronic charge. This emerging technology is known as spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61:2472

    Article  Google Scholar 

  2. Grünberg P, Schreiber R, Pang Y, Brodsky MB, Sowers H (1986) Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys Rev Lett 57:2442–2445

    Article  Google Scholar 

  3. Julliere M (1975) Tunneling between ferromagnetic films. Phys Lett A54(3):225–226

    Google Scholar 

  4. Miyazaki T, Tezuka N (1995) Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J Magn Magn Mater 139:L231

    Google Scholar 

  5. Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Large magnetoresistance at room temperature in ferromagnetic thin-film tunnel junction. Phys Rev Lett 74:3273

    Article  Google Scholar 

  6. Butler WH, Zhang X-G, Schulthess T, MacLarem JM (2001) Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys Rev B63:054416

    Google Scholar 

  7. Mathon J, Umerski A (2001) Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys Rev B63:220403

    Google Scholar 

  8. Yuasa S, Katayama T, Nagahama T, Fukushima A, Kubota H, Suzuki Y, Ando K (2004) Giant room-temperature megnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3:868

    Article  Google Scholar 

  9. Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang S-H (2004) Giant tunneling magnetoresistance at toom temperature with MgO(100) tunnel burriers. Nat Mater 3:862

    Google Scholar 

  10. Djayaprawira DD, Tsunekawa K, Nagai M, Maehara H, Yamagata S, Watanabe N, Yuasa S, Suzuki Y, Ando K (2005) 230 % room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 86:092502

    Article  Google Scholar 

  11. Hayakawa J, Ikeda S, Matsukura F, Takahashi H, Ohno H (2005) Dependence of giant tunnel magnetoresistance of sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions on MgO barrier thickness and annealing temperature. Jpn J Appl Phys 44:L587

    Article  Google Scholar 

  12. Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H (2008) Tunnel magnetoresistance of 604% at 300 K by suppresstion of Ta disffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett 93:082508

    Article  Google Scholar 

  13. Yoshikawa M, Kitagawa E, Nagase T, Daibou T, Nagamine M, Nishiyama K, Kishi T, Yoda H (2008) Tunnel magnetoresistance over 100% in MgO-based magnetic tunnel junction films with perpendicular magnetic L10-FePt electrodes. IEEE Trans Mag 44:2573

    Article  Google Scholar 

  14. Yakushiji K, Noma K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Ando K (2010) High magnetoresistance ratio and low resistance–area product in magnetic tunnel junctions with perpendicularly magnetized electrodes. Appl Phys Express 3:053003

    Article  Google Scholar 

  15. Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan HD, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H (2010) A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat Mater 9:721–724

    Article  Google Scholar 

  16. Jedema FJ, Filip AT, van Wees BJ (2002) Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410:3454

    Google Scholar 

  17. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B54:9353

    Google Scholar 

  18. Slonczwski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1

    Article  Google Scholar 

  19. Myers EB, Ralph DC, Katine JA, Louie RN, Buhrman RA (1999) Current-induced switching of domains in magnetic multilayer devices. Science 285:867–870

    Article  Google Scholar 

  20. Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC (2000) Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys Rev Lett 84:3149

    Article  Google Scholar 

  21. Grollier J, Cros V, Hamzic A, George JM, Jaffre´s H, Fert A, Faini G, Ben Youssef J, Legall H (2001) Spin-polarized current induced switching in Co/Cu/Co pillars. Appl Phys Lett 78:3663

    Article  Google Scholar 

  22. Sun JZ (2000) Spin-current interaction with a monodomain magnetic body: a model study. Phys Rev B62:570–578

    Google Scholar 

  23. Slonczewski JC (2005) Currents, torques, and polarization factors in magnetic tunnel junctions. Phys Rev B75:024411

    Google Scholar 

  24. Mangin S, Ravelosona D, Katine JA, Csrey MJ, Terris BD, Fullerton EE (2006) Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat Mater 5:210–215

    Article  Google Scholar 

  25. Koch RH, Katine JA, Sun JZ (2004) Time-resolved reversal of spin-transfer switching in a nanomagnet. Phys Rev Lett 92:088302

    Google Scholar 

  26. Fukami S, Suzuki T, Ohshima N, Nagahara K, Ishiwata N (2008) Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy. J Appl Phys 103:07E718

    Google Scholar 

  27. Dyakonov MI, Perel VI (1971) Possibility of orientating spins with current. Sov Phys JETP Lett 13:467

    Google Scholar 

  28. Wunderlich J, Kästner B, Sinova J, Jungwirth T (2005) Experimental observation of the spin-hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett 94:047204

    Article  Google Scholar 

  29. Kato YK, Myers RC, Gossard AC, Awschalom DD (2004) Observation of the spin Hall effect in semiconductors. Science 306:1910

    Article  Google Scholar 

  30. Murakami S, Nagaosa N, Zhang S-C (2003) Dissipationless quantum spin current at room temperature. Science 301:1348

    Article  Google Scholar 

  31. Sinova J, Culcer D, Niu Q, Sinitsyn NA, Jungwirth T, MacDonald AH (2004) Universal intrinsic spin Hall effect. Phys Rev Lett 92:126603

    Article  Google Scholar 

  32. Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442:176

    Article  Google Scholar 

  33. Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S (2007) Room-temperature reversible spin Hall effect. Phys Rev Lett 98:156601

    Article  Google Scholar 

  34. Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F, Ohno H (2008) Magnetization vector manipulation by electric fields. Nature 455:515

    Article  Google Scholar 

  35. Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar AA, Shinjo T, Shiraishi M, Mizukami S, Ando Y, Suzuki Y (2009) Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat Nanotech 4:158

    Google Scholar 

  36. Endo M, Kanai S, Ikeda S, Matsukura F, Ohno H (2010) Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl Phys Lett 96:212503

    Article  Google Scholar 

  37. Overby M, Chernyshov A, Rokhinson LP, Liu X, Furdyna JK (2008) GaMnAs-based hybrid multiferroic memory device. Appl Phys Lett 92:192501

    Article  Google Scholar 

  38. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759

    Article  Google Scholar 

  39. Saito M, Ishikawa K, Konno S, Taniguchi K, Arima T (2009) Periodic rotation of magnetization in a non-centrosymmetric soft magnet induced by an electric field. Nat Mater 4:634

    Article  Google Scholar 

  40. Borisov P, Hochstrat A, Chen X, Kleemann W, Binek C (2005) Magnetoelectric switching of exchange bias. Phys Rev Lett 94:117203

    Article  Google Scholar 

  41. Sahoo S, Polisetty S, Duan C-G, Jaswal SS, Tsymbal EY, Binek C (2007) Ferroelectric control of magnetism in BaTiO3 /Fe heterostructures via interface strain coupling. Phys Rev B76:092108

    Google Scholar 

  42. Chu Y-H, Martin LW, Holcomb MB, Gajek M, Han S-J, He Q, Balke N, Yang C-H, Lee D, Hu W, Zhan Q, Yang P-L, Fraile-Rodríguez A, Scholl A, Wang SX, Ramesh R (2008) Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater 7:478

    Google Scholar 

  43. Duan C-G, Velev JP, Sabirianov RF, Mei WN, Jaswal SS, Tsymbal EY (2008) Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface. Appl Phys Lett 92:122905

    Article  Google Scholar 

  44. Andre TW, Nahas JJ, Subramanian CK, Garni BJ, Lin HS, Omair A, Martino WL Jr (2005) A 4 Mb 0.18-um 1T1MTJ toggle MRAM with balanced three input sensing scheme and locally mirrored unidirectional write drivers. IEEE J Solid-State Circ 40:301–309

    Article  Google Scholar 

  45. Engel BN, Åkerman J, Butcher B, Dave RW, DeHerrera M, Durlam M, Grynkewich G, Janesky J, Pietambaram SV, Rizzo ND, Slaughter JM, Smith K, Sun JJ, Tehrani S (2005) A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans Magn 41:132

    Article  Google Scholar 

  46. Kawahara T, Ito K, Takemura R, Ohno H (2012) Spin-transfer torque RAM technology: review and prospect. Microelectron Reliab 52:613

    Article  Google Scholar 

  47. Ichimura M, Hamada T, Imamura H, Takahashi S, Maekawa S (2009) Spin transfer torque in magnetic tunnel junctions with synthetic ferrimagnetic layers. J Appl Phys 105:07D120

    Google Scholar 

  48. Yen C-T, Chen W-C, Wang D-Y, Lee Y-J, Shen C-T, Yang S-Y, Tsai C-H, Hung C-C, Shen K-H, Tsai M-J, Kao M-J (2008) Reduction in critical current density for spin torque transfer switching with composite free layer. Appl Phys Lett 93:092504

    Article  Google Scholar 

  49. Yakata S, Kubota H, Suzuki Y, Yakushiji K, Fukushima A, Yuasa S, Ando K (2009) Influence of perpendicular magnetic anisotropy on spin-transfer switching current in CoFeB/MgO/CoFeB magnetic tunnel junctions. J Appl Phys 105:07D131

    Google Scholar 

  50. Fukami S, Nakatani Y, Suzuki T, Nagahara K, Ohshima N, Ishiwata N (2009) Relation between critical current of domain wall motion and wire dimension in perpendicularly magnetized Co/Ni nanowires. Appl Phys Lett 95:232504

    Article  Google Scholar 

  51. Fukami S, Suzuki T, Nagahara K, Ohshima N, Ishiwata N (2010) Large thermal stability independent of critical current of domain wall motion in Co/Ni nanowires with step pinning sites. J Appl Phys 108:113914

    Article  Google Scholar 

  52. Das B, Datta S, Reifenberger R (1990) Zero-field spin splitting in a two-dimensional electron gas. Phys Rev B41:8278

    Google Scholar 

  53. Fert A, Jaffre`s H (2001) Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys Rev B64:184420

    Google Scholar 

  54. Zhu HJ, Ramsteiner M, Kostial H, Wassermeier M, Schönherr H-P, Ploog KH (2001) Room-temperature spin injection from Fe into GaAs. Phys Rev Lett 87:016610

    Google Scholar 

  55. Hanbicki AT, van ’t Erve OMJ, Magno R, Kioseoglou G, Li CH, Jonker BT, Itskos G, Mallory R, Yasar M, Petrou A (2003) Analysis of the transport process providing spin injection through an FeÕAlGaAs Schottky barrier. Appl Phys Lett 82:4092

    Google Scholar 

  56. Jiang X, Wang R, Shelby RM, Macfarlane RM, Bank SR, Harris JS, Parkin SSP (2005) Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys Rev Lett 94:056601

    Article  Google Scholar 

  57. Dash SP, Sharma S, Patel RS, de Jong MP, Jansen R (2009) Electrical creation of spin polarization in silicon at room temperature. Nature 462:491

    Article  Google Scholar 

  58. Suzuki T, Sasaki T, Oikawa T, Shiraishi M, Suzuki Y, Noguchi K (2011) Room-temperature electron spin transport in a highly doped Si channel. Appl Phys Exp 4:023003

    Article  Google Scholar 

  59. Bernevig BA, Orenstein J, Zhang S-C (2006) Exact SU(2) symmetry and persistent spin helix in a spin-orbit coupled system. Phys Rev Lett 97:236601

    Google Scholar 

  60. Koralek JD, Weber CP, Orenstein J, Bernevig BA, Zhang S-C, Mack S, Awschalom DD (2009) Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458:610

    Google Scholar 

  61. Wunderlich J, Irvine AC, Sinova J, Park BG, Zârbo LP, Xu XL, Kaestner B, Novák V, Jungwirth T (2009) Spin-injection Hall effect in a planar photovoltaic cell. Nat Phys 5:675

    Google Scholar 

  62. Wunderlich J, Park B-G, Irvine AC, Zârbo LP, Rozkotová E, Nemec P, Novák V, Sinova J, Jungwirth T (2010) Spin Hall effect transistor. Science 330:1801

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported in part by the “High-Performance Low-Power Consumption Spin Devices and Storage Systems” program and “Research and Development for Next-Generation Information Technology” of MEXT, and also by the Japan Society for the Promotion of Science(JSPS) through its “Funding Program for World-Leading Innovative R&D on Science and Technology” (FIRST Program), headed by Professor Hideo Ohno of Tohoku University.

The authors thank Prof. Ohno and Prof. Ikeda at Tohoku University for their great contributions to MTJ and STT-RAM technology progress and also thank lots of collaborators at Tohoku University and Hitachi Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenchi Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ito, K. (2013). Low-Power Spin Devices. In: Kawahara, T., Mizuno, H. (eds) Green Computing with Emerging Memory. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0812-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0812-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0811-6

  • Online ISBN: 978-1-4614-0812-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics