Skip to main content

Abstract

To make this book self-contained, this chapter will review relevant mathematical concepts used in this book. We first review basic probability and statistical concepts used in this book. Then we introduce mathematic notations for statistical processes with multiple variable and variable reduction methods. We will then go through some statistical analysis approaches such as the MC method and the spectral stochastic method. Finally, we will discuss some fast techniques to compute some of random variables with log-normal distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Chang and S. S. Sapatnekar, “Full-chip analysis of leakage power under process variations, including spatial correlations,” in Proc. IEEE/ACM Design Automation Conference (DAC), 2005, pp. 523–528.

    Google Scholar 

  2. G. F. Fishman, Monte Carlo, concepts, algorithms, and Applications. Springer, 1996.

    Google Scholar 

  3. R. Ghanem, “The nonlinear Gaussian spectrum of log-normal stochastic processes and variables,” Journal of Applied Mechanics, vol. 66, pp. 964–973, December 1999.

    Article  Google Scholar 

  4. R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach. Dover Publications, 2003.

    Google Scholar 

  5. A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 3rd ed. Cambridge University, 1996.

    Google Scholar 

  6. R. Jiang, W. Fu, J. M. Wang, V. Lin, and C. C.-P. Chen, “Efficient statistical capacitance variability modeling with orthogonal principle factor analysis,” in Proc. Int. Conf. on Computer Aided Design (ICCAD), 2005, pp. 683–690.

    Google Scholar 

  7. I. T. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.

    Google Scholar 

  8. P. Li and W. Shi, “Model order reduction of linear networks with massive ports via frequency-dependent port packing,” in Proc. Design Automation Conf. (DAC), 2006, pp. 267–272.

    Google Scholar 

  9. Y. Liu, S. Nassif, L. Pileggi, and A. Strojwas, “Impact of interconnect variations on the clock skew of a gigahertz microprocessor,” in Proc. IEEE/ACM Design Automation Conference (DAC), 2000, pp. 168–171.

    Google Scholar 

  10. N. Mi, J. Fan, S. X.-D. Tan, Y. Cai, and X. Hong, “Statistical analysis of on-chip power delivery networks considering lognormal leakage current variations with spatial correlations,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, no. 7, pp. 2064–2075, Aug 2008.

    Article  MathSciNet  Google Scholar 

  11. E. Novak and K. Ritter, “Simple cubature formulas with high polynomial exactness,” Constructive Approximation, vol. 15, no. 4, pp. 449–522, Dec 1999.

    Article  MathSciNet  Google Scholar 

  12. A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes. McGraw-Hill, 2001.

    Google Scholar 

  13. A. Srivastava, R. Bai, D. Blaauw, and D. Sylvester, “Modeling and analysis of leakage power considering within-die process variations,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), Aug 2002, pp. 64–67.

    Google Scholar 

  14. S. Vrudhula, J. M. Wang, and P. Ghanta, “Hermite polynomial based interconnect analysis in the presence of process variations,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, 2006.

    Google Scholar 

  15. D. Xiu and G. Karniadakis, “The Wiener-Askey polynomial chaos for stochastic differential equations,” SIAM J. Scientific Computing, vol. 24, no. 2, pp. 619–644, Oct 2002.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Xiu and G. Karniadakis, “Modeling uncertainty in flow simulations via generalized polynomial chaos,” J. of Computational Physics, vol. 187, no. 1, pp. 137–167, May 2003.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Yu, C. Hu, and W. Zhang, “Variational capacitance extraction of on-chip interconnects based on continuous surface model,” in Proc. IEEE/ACM Design Automation Conference (DAC), July 2009, pp. 758–763.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shen, R., Tan, S.XD., Yu, H. (2012). Fundamentals of Statistical Analysis. In: Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0788-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0788-1_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0787-4

  • Online ISBN: 978-1-4614-0788-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics