Skip to main content

Generation and Analysis of Genome-Wide DNA Methylation Maps

  • Chapter
  • First Online:

Abstract

Cytosine methylations are common mechanisms of epigenetic modifications of DNA molecules which also influence gene expression and cell phenotypes. Thus, 5 methyl-cytosine is sometimes called the fifth base of the genome. The development of high throughput sequencing (HTS) technologies has – for the first time – brought about tools to investigate epigenetic alterations in a genome-wide approach. First methylation maps have already been created and it is only a question of time until complete epigenetic maps of healthy and diseased human tissues are available. Here, we summarize the use of HTS for diverse epigenetic technologies, give an overview of the status quo of methylation maps, touch bioinformatics software applications and problems and, finally, outline future perspectives for the application in oncology and basic research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aird, D., Ross, M.G., Chen, W.S., Danielsson, M., Fennell, T., Russ, C., Jaffe, D.B., Nusbaum, C., and Gnirke, A. (2011). Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12, R18.

    Article  PubMed  CAS  Google Scholar 

  • Ball, M.P., Li, J.B., Gao, Y., Lee, J.H., LeProust, E.M., Park, I.H., Xie, B., Daley, G.Q., and Church, G.M. (2009). Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27, 361–368.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, H.N., and Verma, M. (2009). Epigenetic mechanisms in cancer. Biomark Med 3, 397–410.

    Article  PubMed  CAS  Google Scholar 

  • Beck, S., and Rakyan, V.K. (2008). The methylome: approaches for global DNA methylation profiling. Trends Genet 24, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Berman, B.P., Weisenberger, D.J., and Laird, P.W. (2009). Locking in on the human methylome. Nat Biotechnol 27, 341–342.

    Article  PubMed  CAS  Google Scholar 

  • Bian, Y.S., Yan, P., Osterheld, M.C., Fontolliet, C., and Benhattar, J. (2001). Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR-SSCP. Biotechniques 30, 66–72.

    PubMed  CAS  Google Scholar 

  • Boerno, S.T., Fischer, A., Kerick, M., Muench, P.C., Tusche, C., McHardy, A.C., Faelth, M., Wirth, H., Binder, H., Brase, J.-C., et al. (2011). Genome-wide catalogue of DNA-methylation in human prostate cancer. Under review.

    Google Scholar 

  • Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., et al. (2008). The potential and challenges of nanopore sequencing. Nat Biotechnol 26, 1146–1153.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, A.L., Johnson, D.S., Kim, S.W., Valouev, A., Reddy, T.E., Neff, N.F., Anton, E., Medina, C., Nguyen, L., Chiao, E., et al. (2009). Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19, 1044–1056.

    Article  PubMed  CAS  Google Scholar 

  • Carr, I.M., Valleley, E.M., Cordery, S.F., Markham, A.F., and Bonthron, D.T. (2007). Sequence analysis and editing for bisulphite genomic sequencing projects. Nucleic Acids Res 35, e79.

    Article  PubMed  Google Scholar 

  • Chavez, L., Jozefczuk, J., Grimm, C., Dietrich, J., Timmermann, B., Lehrach, H., Herwig, R., and Adjaye, J. (2010). Computational analysis of genome-wide DNA methylation during the differentiation of human embryonic stem cells along the endodermal lineage. Genome Res 20, 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P.Y., Cokus, S.J., and Pellegrini, M. (2010). BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11, 203.

    Article  PubMed  CAS  Google Scholar 

  • Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M., and Jacobsen, S.E. (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Cross, S.H., Charlton, J.A., Nan, X., and Bird, A.P. (1994). Purification of CpG islands using a methylated DNA binding column. Nat Genet 6, 236–244.

    Article  PubMed  CAS  Google Scholar 

  • Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E.M., Antosiewicz-Bourget, J., Egli, D., Maherali, N., Park, I.H., Yu, J., et al. (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Dohm, J.C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2008). Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36, e105.

    Article  PubMed  Google Scholar 

  • Down, T.A., Rakyan, V.K., Turner, D.J., Flicek, P., Li, H., Kulesha, E., Graf, S., Johnson, N., Herrero, J., Tomazou, E.M., et al. (2008). A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26, 779–785.

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V.K., Attwood, J., Burger, M., Burton, J., Cox, T.V., Davies, R., Down, T.A., et al. (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38, 1378–1385.

    Article  PubMed  CAS  Google Scholar 

  • Esteller, M. (2002). CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A.P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A.P., and Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Filion, G.J., van Bemmel, J.G., Braunschweig, U., Talhout, W., Kind, J., Ward, L.D., Brugman, W., de Castro, I.J., Kerkhoven, R.M., Bussemaker, H.J., et al. (2010). Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212–224.

    Article  PubMed  CAS  Google Scholar 

  • Frigola, J., Song, J., Stirzaker, C., Hinshelwood, R.A., Peinado, M.A., and Clark, S.J. (2006). Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38, 540–549.

    Article  PubMed  CAS  Google Scholar 

  • Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., and Paul, C.L. (1992). A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89, 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  • Gama-Sosa, M.A., Slagel, V.A., Trewyn, R.W., Oxenhandler, R., Kuo, K.C., Gehrke, C.W., and Ehrlich, M. (1983). The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11, 6883–6894.

    Article  PubMed  CAS  Google Scholar 

  • Gebhard, C., Schwarzfischer, L., Pham, T.H., Andreesen, R., Mackensen, A., and Rehli, M. (2006). Rapid and sensitive detection of CpG-methylation using methyl-binding (MB)-PCR. Nucleic Acids Res 34(11), e82.

    Google Scholar 

  • Hodges, E., Smith, A.D., Kendall, J., Xuan, Z., Ravi, K., Rooks, M., Zhang, M.Q., Ye, K., Bhattacharjee, A., Brizuela, L., et al. (2009). High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 19, 1593–1605.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Pastor, W.A., Shen, Y., Tahiliani, M., Liu, D.R., and Rao, A. (2010). The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5, e8888.

    Article  PubMed  Google Scholar 

  • Irizarry, R.A., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S.A., Jeddeloh, J.A., Wen, B., and Feinberg, A.P. (2008). Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 18, 780–790.

    Article  PubMed  CAS  Google Scholar 

  • Jacinto, F.V., Ballestar, E., and Esteller, M. (2008). Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 44(1), 35, 37, 39 passim.

    Google Scholar 

  • Jin, S.G., Kadam, S., and Pfeifer, G.P. (2010). Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38, e125.

    Article  PubMed  Google Scholar 

  • Jorgensen, H.F., Adle, K., Chaubert, P., and Bird, A.P. (2006). Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res 34(13), e96.

    Google Scholar 

  • Kerjean, A., Vieillefond, A., Thiounn, N., Sibony, M., Jeanpierre, M., and Jouannet, P. (2001). Bisulfite genomic sequencing of microdissected cells. Nucleic Acids Res 29, E106–106.

    Article  PubMed  CAS  Google Scholar 

  • Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., Pikarski, E., Young, R.A., Niveleau, A., Cedar, H., et al. (2006). Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38, 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Korshunova, Y., Maloney, R.K., Lakey, N., Citek, R.W., Bacher, B., Budiman, A., Ordway, J.M., McCombie, W.R., Leon, J., Jeddeloh, J.A., et al. (2008). Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res 18, 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Kriaucionis, S., and Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930.

    Article  PubMed  CAS  Google Scholar 

  • Laird, P.W. (2010). Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11, 191–203.

    Article  PubMed  CAS  Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.

    Article  PubMed  Google Scholar 

  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18, 1851–1858.

    Article  PubMed  CAS  Google Scholar 

  • Li, J.B., Gao, Y., Aach, J., Zhang, K., Kryukov, G.V., Xie, B., Ahlford, A., Yoon, J.K., Rosenbaum, A.M., Zaranek, A.W., et al. (2009). Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. Genome Res 19, 1606–1615.

    Article  PubMed  Google Scholar 

  • Li, N., Ye, M., Li, Y., Yan, Z., Butcher, L.M., Sun, J., Han, X., Chen, Q., Zhang, X., and Wang, J. (2010). Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods 52, 203–212.

    Article  PubMed  Google Scholar 

  • Lister, R., and Ecker, J.R. (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19, 959–966.

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., and Ecker, J.R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, J., Percharde, M., Coley, H.M., Webb, A., and Crook, T. (2009). The context and potential of epigenetics in oncology. Br J Cancer 100, 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J., and Parviz, B.A. (2009). Scanning probe and nanopore DNA sequencing: core techniques and possibilities. Methods Mol Biol 578, 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, A., Gnirke, A., Bell, G.W., Ramsahoye, B., Lander, E.S., and Jaenisch, R. (2005). Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33, 5868–5877.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770.

    PubMed  CAS  Google Scholar 

  • Nestor, C., Ruzov, A., Meehan, R., and Dunican, D. (2010). Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 48, 317–319.

    Article  PubMed  CAS  Google Scholar 

  • Oda, M., Glass, J.L., Thompson, R.F., Mo, Y., Olivier, E.N., Figueroa, M.E., Selzer, R.R., Richmond, T.A., Zhang, X., Dannenberg, L., et al. (2009). High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 37, 3829–3839.

    Article  PubMed  CAS  Google Scholar 

  • Pepke, S., Wold, B., and Mortazavi, A. (2009). Computation for ChIP-seq and RNA-seq studies. Nat Methods 6, S22–32.

    Article  PubMed  CAS  Google Scholar 

  • Pomraning, K.R., Smith, K.M., and Freitag, M. (2009). Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods 47, 142–150.

    Article  PubMed  CAS  Google Scholar 

  • Popp, C., Dean, W., Feng, S., Cokus, S.J., Andrews, S., Pellegrini, M., Jacobsen, S.E., and Reik, W. (2010). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105.

    Article  PubMed  CAS  Google Scholar 

  • Pushkarev, D., Neff, N.F., and Quake, S.R. (2009). Single-molecule sequencing of an individual human genome. Nat Biotechnol 27, 847–850.

    Article  PubMed  CAS  Google Scholar 

  • Rakyan, V.K., Down, T.A., Thorne, N.P., Flicek, P., Kulesha, E., Graf, S., Tomazou, E.M., Backdahl, L., Johnson, N., Herberth, M., et al. (2008). An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res 18, 1518–1529.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, T., and Pfeifer, G.P. (2005). Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest 85, 1172–1180.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, M.D., Statham, A.L., Speed, T.P., and Clark, S.J. (2010a). Protocol matters: which methylome are you actually studying? Epigenomics 2, 587–598.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, M.D., Stirzaker, C., Statham, A.L., Coolen, M.W., Song, J.Z., Nair, S.S., Strbenac, D., Speed, T.P., and Clark, S.J. (2010b). Evaluation of affinity-based genome-wide DNA methylation data: effects of CpG density, amplification bias, and copy number variation. Genome Res 20, 1719–1729.

    Article  PubMed  CAS  Google Scholar 

  • Ruike, Y., Imanaka, Y., Sato, F., Shimizu, K., and Tsujimoto, G. (2010). Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 11, 137.

    Article  PubMed  Google Scholar 

  • Schweiger, M.R., Kerick, M., Timmermann, B., Albrecht, M.W., Borodina, T., Parkhomchuk, D., Zatloukal, K., and Lehrach, H. (2009). Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One 4, e5548.

    Article  PubMed  Google Scholar 

  • Taylor, K.H., Kramer, R.S., Davis, J.W., Guo, J., Duff, D.J., Xu, D., Caldwell, C.W., and Shi, H. (2007). Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67, 8511–8518.

    Article  PubMed  CAS  Google Scholar 

  • Timmermann, B., Kerick, M., Roehr, C., Fischer, A., Isau, M., Boerno, S.T., Wunderlich, A., Barmeyer, C., Seemann, P., Koenig, J., et al. (2010). Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One 5, e15661.

    Article  PubMed  CAS  Google Scholar 

  • Toyota, M., Ho, C., Ahuja, N., Jair, K.W., Li, Q., Ohe-Toyota, M., Baylin, S.B., and Issa, J.P. (1999). Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59, 2307–2312.

    PubMed  CAS  Google Scholar 

  • Walsh, C.P., Chaillet, J.R., and Bestor, T.H. (1998). Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20, 116–117.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R.Y., Gehrke, C.W., and Ehrlich, M. (1980). Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res 8, 4777–4790.

    Article  PubMed  CAS  Google Scholar 

  • Warnecke, P.M., Stirzaker, C., Melki, J.R., Millar, D.S., Paul, C.L., and Clark, S.J. (1997). Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 25, 4422–4426.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L., and Schubeler, D. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37, 853–862.

    Article  PubMed  CAS  Google Scholar 

  • Weisenberger, D.J., Campan, M., Long, T.I., Kim, M., Woods, C., Fiala, E., Ehrlich, M., and Laird, P.W. (2005). Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33, 6823–6836.

    Article  PubMed  CAS  Google Scholar 

  • Wilbanks, E.G., and Facciotti, M.T. (2010). Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One 5, e11471.

    Article  PubMed  Google Scholar 

  • Wu, T.D., and Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881.

    Article  PubMed  CAS  Google Scholar 

  • Xi, Y., and Li, W. (2009). BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232.

    Article  PubMed  Google Scholar 

  • Yuan, Y., Curtis, C., Caldas, C., and Markowetz, F. (2010). A sparse regulatory network of copy-number driven expression reveals putative breast cancer oncogenes. In ArXiv e-prints, pp. 1409.

    Google Scholar 

  • Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal-Ruth Schweiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kerick, M., Fischer, A., Schweiger, MR. (2012). Generation and Analysis of Genome-Wide DNA Methylation Maps. In: Rodríguez-Ezpeleta, N., Hackenberg, M., Aransay, A. (eds) Bioinformatics for High Throughput Sequencing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0782-9_9

Download citation

Publish with us

Policies and ethics