Skip to main content

Overview of Sequencing Technology Platforms

  • Chapter
  • First Online:
Bioinformatics for High Throughput Sequencing

Abstract

The high-throughput DNA sequencing technologies are based on ­immobilization of the DNA samples onto a solid support, cyclic sequencing reactions using automated fluidics devices, and detection of molecular events by imaging. Featured sequencing technologies include: GS FLX by 454 Life Technologies/Roche, Genome Analyzer by Solexa/Illumina, SOLiD by Applied Biosystems, CGA Platform by Complete Genomics, and PacBio RS by Pacific Biosciences. In addition, emerging technologies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bentley, D. R. 2006. Whole-genome re-sequencing. Curr Opin Genet Dev 16 (6):545–552. doi:S0959-437X(06)00208-5 [pii] 10.1016/j.gde.2006.10.009.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, DR, S Balasubramanian, HP Swerdlow, GP Smith, J Milton, CG Brown, KP Hall et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Drmanac, R., A. B. Sparks, M. J. Callow, A. L. Halpern, N. L. Burns, B. G. Kermani, P. Carnevali et al. 2010. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327 (5961):78–81. doi:1181498 [pii] 10.1126/science.1181498.

    Article  PubMed  CAS  Google Scholar 

  • Eid, J, A Fehr, J Gray, K Luong, J Lyle, G Otto, P Peluso et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133–138.

    Article  PubMed  CAS  Google Scholar 

  • Flusberg, B. A., D. R. Webster, J. H. Lee, K. J. Travers, E. C. Olivares, T. A. Clark, J. Korlach, and S. W. Turner. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7 (6):461–465. doi:nmeth.1459 [pii] 10.1038/nmeth.1459.

    Article  PubMed  CAS  Google Scholar 

  • Korlach, J, A Bibillo, J Wegener, P Peluso, TT Pham, I Park, S Clark, GA Otto, and SW Turner. 2008. Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleosides Nucleotides Nucleic Acids 27:1072–1083.

    Article  PubMed  CAS  Google Scholar 

  • Korlach, J., P. J. Marks, R. L. Cicero, J. J. Gray, D. L. Murphy, D. B. Roitman, T. T. Pham, G. A. Otto, M. Foquet, and S. W. Turner. 2008. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci USA 105 (4):1176–1181.

    Article  PubMed  CAS  Google Scholar 

  • Levene, M. J., J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb. 2003. ­Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299 (5607):682–686.

    Article  PubMed  CAS  Google Scholar 

  • Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437 (7057):376–380. doi:nature03959 [pii] 10.1038/nature03959.

    PubMed  CAS  Google Scholar 

  • Shendure, J., G. J. Porreca, N. B. Reppas, X. Lin, J. P. McCutcheon, A. M. Rosenbaum, M. D. Wang, K. Zhang, R. D. Mitra, and G. M. Church. 2005. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309 (5741):1728–1732. doi:1117389 [pii] 10.1126/science.1117389.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. M., L. E. Heisler, R. P. St Onge, E. Farias-Hesson, I. M. Wallace, J. Bodeau, A. N. Harris et al. 2010. Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples. Nucleic Acids Res 38 (13):e142.

    Article  PubMed  Google Scholar 

  • Travers, K. J., C. S. Chin, D. R. Rank, J. S. Eid, and S. W. Turner. 2010. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38 (15):e159. doi:gkq543 [pii] 10.1093/nar/gkq543.

    Article  PubMed  Google Scholar 

  • Valouev, A., J. Ichikawa, T. Tonthat, J. Stuart, S. Ranade, H. Peckham, K. Zeng et al. 2008. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18 (7):1051–1063. doi:gr.076463.108 [pii] 10.1101/gr.076463.108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlee P. Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Myllykangas, S., Buenrostro, J., Ji, H.P. (2012). Overview of Sequencing Technology Platforms. In: Rodríguez-Ezpeleta, N., Hackenberg, M., Aransay, A. (eds) Bioinformatics for High Throughput Sequencing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0782-9_2

Download citation

Publish with us

Policies and ethics