Lagrange Interpolation and New Asymptotic Formulae for the Riemann Zeta Function

Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 13)


An asymptotic representation for the Riemann zeta function ζ(s) in terms of the Lagrange interpolation error of some function f s,2N at the Chebyshev nodes is found. The representation is based on new error formulae for the Lagrange polynomial interpolation to a function of the form \(f(y) ={ \int \nolimits \nolimits }_{\mathbb{R}} \frac{\varphi (t)} {t-iy}\mathrm{d}t.\) As the major application of this result, new criteria for ζ(s)=0 and ζ(s)≠0 in the critical strip 0<Re s<1 are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, S.N.: Extremal Properties of Polynomials and the Best Approximation of Continuous Functions of a Single Real Variable. State United Scientific and Technical Publishing House, Moscow (1937) (in Russian).Google Scholar
  2. 2.
    Conrey, B.: The Riemann Hypothesis. Notices of AMS, 50, No. 3, 341-353 (2003)Google Scholar
  3. 3.
    Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Trancendental Functions, Vol. I. McGraw-Hill, New York (1953)Google Scholar
  4. 4.
    Fejér, L.: Lebesguesche Konstanten und devergente Fourierreihen. JRAM, 138, 22-53 (1910)MATHGoogle Scholar
  5. 5.
    Ganzburg, M.I.: The Bernstein constant and polynomial interpolation at the Chebyshev nodes. J. Approx. Theory, 119, 193-213 (2002)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Ganzburg, M.I.: Strong asymptotics in Lagrange interpolation with equidistant nodes. J. Approx. Theory, 122, 224-240 (2003)MathSciNetMATHGoogle Scholar
  7. 7.
    Ganzburg, M.I.: Polynomial interpolation, an L-function, and pointwise approximation of continuous functions with equidistant nodes. J. Approx. Theory, 153, 1-18 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ganzburg, M.I.: Polynomial interpolation formulae and asymptotic representations of zeta functions. Manuscript (2010)Google Scholar
  9. 9.
    Gradshtein, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. 5th Edition, Academic Press, San Diego (1994)Google Scholar
  10. 10.
    Lubinsky, D.S.: Best approximation and interpolation of \({(1 + {(ax)}^{2})}^{-1}\) and its transforms, J. Approx. Theory 125, 106-115 (2003).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Szegö, G.: Orthogonal Polynomials. Colloquium Publications, 23, Amer Math. Soc., Providence, RI (1975)Google Scholar
  12. 12.
    Walsh, J.L.: Interpolation and Approximation by Rational Functions in the Complex Domain. 5th Edition, Amer. Math. Soc. Colloq. Publ. 20, Providence, RI (1969)Google Scholar
  13. 13.
    Watson, G.N.: A Treatise on the Theore of Bessel Functions. Cambridge University Press, Cambridge, UK (1966)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Hampton UniversityVAUSA

Personalised recommendations