Skip to main content

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 166))

  • 5969 Accesses

Abstract

This chapter provides an introduction to copositive programming, which is linear programming over the convex conic of copositive matrices. Researchers have shown that many NP-hard optimization problems can be represented as copositive programs, and this chapter recounts and extends these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The paper [20] has established a similar result concurrently with this chapter, and the paper [19] studies the generalized notion of copositivity over an arbitrary set, analyzing important properties of the resulting convex cone.

  2. 2.

    If \(\mathcal{K}\) is a semidefinite cone, than \(\mathcal{K}\) must be encoded in its “vectorized” form to match the development in this chapter. For example, the columns of a d ×d semidefinite matrix could be stacked into a single, long column vector of size d2, and then the CP matrices yyT over \({\mathfrak{R}}_{+} \times \mathcal{K}\) would have size \(({d}^{2} + 1) \times ({d}^{2} + 1)\).

References

  1. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Mathematical Programming (series B) 124, 33–43 (2010)

    Article  Google Scholar 

  2. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: Analysis, algorithms, and engineering applications. MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001)

    Book  Google Scholar 

  3. Berman, A., Rothblum, U.G.: A note on the computation of the CP-rank. Linear Algebra Appl. 419, 1–7 (2006)

    Article  Google Scholar 

  4. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific (2003)

    Google Scholar 

  5. Bomze, I., Jarre, F.: A note on Burer’s copositive representation of mixed-binary QPs. Optimization Letters 4, 465–472 (2010)

    Article  Google Scholar 

  6. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. Dedicated to Professor Naum Z. Shor on his 65th birthday. J. Global Optim. 24(2), 163–185 (2002)

    Article  Google Scholar 

  7. Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Global Optim. 18(4), 301–320 (2000)

    Article  Google Scholar 

  8. Bundfuss, S., Dür, M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20(1), 30–53 (2009)

    Article  Google Scholar 

  9. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Mathematical Programming 120, 479–495 (2009)

    Article  Google Scholar 

  10. Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Mathematical Programming Computation 2(1), 1–19 (2010)

    Article  Google Scholar 

  11. Burer, S., Anstreicher, K.M., Dür, M.: The difference between 5 ×5 doubly nonnegative and completely positive matrices. Linear Algebra Appl. 431(9), 1539–1552 (2009)

    Article  Google Scholar 

  12. Burer, S., Dong, H.: Separation and relaxation for cones of quadratic forms. Manuscript, University of Iowa (2010) Submitted to Mathematical Programming.

    Google Scholar 

  13. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)

    Article  Google Scholar 

  14. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Programming 122(2, Ser. A), 225–246 (2010)

    Article  Google Scholar 

  15. Dong, H., Anstreicher, K.: Separating Doubly Nonnegative and Completely Positive Matrices. Manuscript, University of Iowa (2010) To appear in Mathematical Programming. Available at http://www.optimization-online.org/DB_HTML/2010/03/2562.html.

  16. Dukanovic, I., Rendl, F.: Copositive programming motivated bounds on the stability and the chromatic numbers. Math. Program. 121(2, Ser. A), 249–268 (2010)

    Google Scholar 

  17. Dür, M.: Copositive Programming—A Survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer (2010)

    Google Scholar 

  18. Dür, M., Still, G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 48–53 (2008)

    Google Scholar 

  19. Eichfelder, G., Jahn, J.: Set-semidefinite optimization. Journal of Convex Analysis 15, 767–801 (2008)

    Google Scholar 

  20. Eichfelder, G., Povh, J.: On reformulations of nonconvex quadratic programs over convex cones by set-semidefinite constraints. Manuscript, Faculty of Information Studies, Slovenia, December (2010)

    Google Scholar 

  21. Faye, A., Roupin, F.: Partial lagrangian relaxation for general quadratic programming. 4OR 5, 75–88 (2007)

    Article  Google Scholar 

  22. Gvozdenović, N., Laurent, M.: Semidefinite bounds for the stability number of a graph via sums of squares of polynomials. In Lecture Notes in Computer Science, 3509, pp. 136–151. IPCO XI (2005)

    Google Scholar 

  23. Gvozdenović, N., Laurent, M.: Computing semidefinite programming lower bounds for the (fractional) chromatic number via block-diagonalization. SIAM J. Optim. 19(2), 592–615 (2008)

    Article  Google Scholar 

  24. Gvozdenović, N., Laurent, M.: The operator Ψ for the chromatic number of a graph. SIAM J. Optim. 19(2), 572–591 (2008)

    Article  Google Scholar 

  25. Hiriart-Urruty, J.-B., Seeger, A.: A variational approach to copositive matrices. SIAM Review, 52(4), 593–629 (2010)

    Article  Google Scholar 

  26. Maxfield, J.E., Minc, H.: On the matrix equation XX = A. Proc. Edinburgh Math. Soc. (2) 13, 125–129 (1962/1963)

    Google Scholar 

  27. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Programming 39(2), 117–129 (1987)

    Article  Google Scholar 

  28. Natarajan, K., Teo, C., Zheng, Z.: Mixed zero-one linear progams under objective uncertainty: A completely positive representation. Operations Research, 59(3), 713–728, (2011)

    Article  Google Scholar 

  29. Nesterov, Y.E., Nemirovskii, A.S.: Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    Book  Google Scholar 

  30. Parrilo, P.: Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology (2000)

    Google Scholar 

  31. Peña, J., Vera, J., Zuluaga, L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18(1), 87–105 (2007)

    Article  Google Scholar 

  32. Povh, J.: Towards the optimum by semidefinite and copositive programming : new approach to approximate hard optimization problems. VDM Verlag (2009)

    Google Scholar 

  33. Povh, J., Rendl, F.: A copositive programming approach to graph partitioning. SIAM J. Optim. 18(1), 223–241 (2007)

    Article  Google Scholar 

  34. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optim. 6(3), 231–241 (2009)

    Article  Google Scholar 

  35. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    Article  Google Scholar 

  36. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented lagrangian methods for semidefinite programming. Manuscript, Department of Industrial Engineering and Operations Research, Columbia University, New York, NY, USA (2009)

    Google Scholar 

  37. Yildirim, E.A.: On the accuracy of uniform polyhedral approximations of the copositive cone. Manuscript, Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey (2009) To appear in Optimization Methods and Software.

    Google Scholar 

  38. Zhao, X., Sun, D., Toh, K.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Mirjam Dür and Janez Povh for stimulating discussions on the topic of this chapter. The author also acknowledges the support of National Science Foundation Grant CCF-0545514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Burer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burer, S. (2012). Copositive Programming. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0769-0_8

Download citation

Publish with us

Policies and ethics