Skip to main content

Latest Developments in the SDPA Family for Solving Large-Scale SDPs

  • Chapter
  • First Online:
Book cover Handbook on Semidefinite, Conic and Polynomial Optimization

Abstract

The main purpose of this chapter is to introduce the latest developments in SDPA and its family. SDPA is designed to solve large-scale SemiDefinite Programs (SDPs) faster and over the course of 15 years of development, it has been expanded into a high-performance-oriented software package. We hope that this introduction to the latest developments of the SDPA Family will be beneficial to readers who wish to understand the inside of state-of-art software packages for solving SDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://gmplib.org/.

  2. 2.

    http://sourceforge.net/projects/mplapack/.

  3. 3.

    http://www.netlib.org/linalg/spooles/.

  4. 4.

    http://www.cs.umn.edu/\(\tilde{\ }\)metis.

References

  1. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results. SIAM J. on Optim. 8, 746–768 (1998)

    Article  Google Scholar 

  2. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods in Appl. Mech. Eng. 184, 501–520 (2000)

    Article  Google Scholar 

  3. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. of Matrix Anal. and Appl. 23, 15–41 (2001)

    Article  Google Scholar 

  4. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Computing 32, 136–156 (2006)

    Article  Google Scholar 

  5. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the third international symposium on information processing in sensor networks, ACM press, 46–54 (2004)

    Google Scholar 

  6. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  Google Scholar 

  7. Borchers, B.: CSDP, A C library for semidefinite programming. Optim. Meth. and Softw. 11 & 12, 613–623 (1999)

    Article  Google Scholar 

  8. Borchers, B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Meth. and Softw. 11 & 12, 683–690 (1999)

    Article  Google Scholar 

  9. Borchers, B., Young, J.G.: Implementation of a primal-dual method for SDP on a shared memory parallel architecture. Comp. Optim. and Appl. 37, 355–369 (2007)

    Article  Google Scholar 

  10. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. Society for Industrial and Applied Mathematics, Philadelphia, PA (1994)

    Book  Google Scholar 

  11. Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D., Whaley, R.C.: The design and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines. Tech. Report UT CS-94-296, LAPACK Working Notes #80, University of Tennessee (1994)

    Google Scholar 

  12. Fujisawa, K., Kojima, M., Nakata, K.: Exploiting sparsity in primal-dual interior-point methods for semidefinite programming. Math. Prog. 79, 235–253 (1997)

    Article  Google Scholar 

  13. Fujisawa, K., Nakata, K., Yamashita, M., Fukuda, M.: SDPA Project: Solving large-scale semidefinite programs. J. Oper. Res. Soc. Japan 50, 278–298 (2007)

    Google Scholar 

  14. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42, 1115–1145 (1995)

    Article  Google Scholar 

  15. Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian matrices, Linear Algebra Appl. 58, 109–124 (1984)

    Article  Google Scholar 

  16. Helmberg, C., Rendl, F., Vanderbei R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6, 342–361 (1996)

    Article  Google Scholar 

  17. Hida, Y., Li, X.S., Bailey, D.H.: Quad-double arithmetic: Algorithms, implementation, and application, Technical Report LBNL-46996, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, Oct. (2000)

    Google Scholar 

  18. Kobayashi, K., Kim S., Kojima, M.: Correlative sparsity in primal-dual interior-point methods for LP, SDP and SOCP, Appl. Math. Optim. 58, 69–88 (2008)

    Article  Google Scholar 

  19. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problems in symmetric matrices. SIAM J. Optim. 7, 86–125 (1997)

    Article  Google Scholar 

  20. Lasserre, J.B.: Global optimization with polynomials and the problems of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  Google Scholar 

  21. Liu, Y.T., Liu, T.Y, Qin, T., Ma, Z.M, Li, H.: Supervised rank aggregation. Proceedings of the 16th international conference on World Wide Web, 481–490 (2007)

    Google Scholar 

  22. Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB. Proceedings of the CACSD Conference (2004)

    Google Scholar 

  23. Mittelman, H.D.: Additional SDP test problems. http://plato.asu.edu/ftp/sdp/ 00README

  24. Mittelmann, H.D., Vallentin, F.: High accuracy semidefinite programming bounds for kissing numbers. Exper. Math. 19, 174–179 (2010)

    Article  Google Scholar 

  25. Monteiro, R.D.C.: Primal-dual path following algorithms for semidefinite programming. SIAM J. Optim. 7, 663–678 (1997)

    Article  Google Scholar 

  26. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite programming via matrix completion II: Implementation and numerical results, Math. Prog. B 95, 303–327 (2003)

    Article  Google Scholar 

  27. Nakata, K., Yamashita, M., Fujisawa, K., Kojima, M.: A parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion, Parallel Computing 32, 24–43 (2006).

    Article  Google Scholar 

  28. Nakata, M., Braams, B.J., Fujisawa, K., Fukuda, M., Percus, J.K., Yamashita, M., Zhao, Z.: Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver. J. Chem. Phys. 128, 164113 (2008)

    Article  Google Scholar 

  29. Nakata, M., Nakatsuji, H., Ehara, M., Fukuda, M., Nakata. K., Fujisawa, K.: Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm. J. Chem. Phys. 114, 8282–8292 (2001)

    Article  Google Scholar 

  30. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8, 324–364 (1998)

    Article  Google Scholar 

  31. Sturm, J.F.: SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Meth. and Softw. 11 & 12, 625–653 (1999)

    Article  Google Scholar 

  32. Toh, K.-C., Todd, M.J., Tütüncü, R.H.: SDPT3 – a MATLAB software package for semidefinite programming, version 1.3. Optim. Meth. and Softw. 11 & 12, 545–581 (1999)

    Google Scholar 

  33. Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883: SparsePOP : A Sparse semidefinite programming relaxation of Polynomial Optimization Problems. ACM Trans. Math. Softw. 35, 13 pages (2009)

    Google Scholar 

  34. Waki, H., Nakata, M., Muramatsu, M.: Strange behaviors of interior-point methods for solving semidefinite programming problems in polynomial optimization. To appear in Comput. Optim. and Appl.

    Google Scholar 

  35. Yamashita, M., Fujisawa, K., Fukuda, M., Nakata, K., Nakata, M.,: Parallel solver for semidefinite programming problems having sparse Schur complement matrix. Research Report B-463, Dept. of Math. and Comp. Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152–8552, September 2010.

    Google Scholar 

  36. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA6.0 (SemiDefinite Programming Algorithm 6.0). Optim. Meth. and Softw. 18, 491–505 (2003)

    Article  Google Scholar 

  37. Yamashita, M., Fujisawa, K., Kojima, M.: SDPARA: SemiDefinite Programming Algorithm paRAllel version. Parallel Computing 29, 1053–1067 (2003)

    Article  Google Scholar 

  38. Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K.: A high-performance software package for semidefinite programs: SDPA 7. Research Report B-460, Dept. of Math. and Comp. Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152–8552, January 2010.

    Google Scholar 

Download references

Acknowledgements

M. Yamashita’s and K. Nakata’s research was partially supported by Grant-in-Aid for Young Scientists (B) 21710148 and (B) 22710136. K. Fujisawa’s, M. Fukuda’s and M. Nakata’s research was partially supported by Grant-in-Aid for Scientific Research (C) 20510143, (B) 20340024, and (B) 21300017. K. Fujisawa’s research was also supported by a Chuo University Grant for Special Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yamashita, M., Fujisawa, K., Fukuda, M., Kobayashi, K., Nakata, K., Nakata, M. (2012). Latest Developments in the SDPA Family for Solving Large-Scale SDPs. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0769-0_24

Download citation

Publish with us

Policies and ethics