Skip to main content

The State-of-the-Art in Conic Optimization Software

  • Chapter
  • First Online:
Handbook on Semidefinite, Conic and Polynomial Optimization

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 166))

  • 5734 Accesses

Abstract

This work gives an overview of the major codes available for the solution of linear semidefinite (SDP) and second-order cone (SOCP) programs. Many of these codes also solve linear programs (LP). Some developments since the 7th DIMACS Challenge [10, 18] are pointed out as well as some currently under way. Instead of presenting performance tables, reference is made to the ongoing benchmark webpage [20] as well as other related efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, M.S., Dahl, J., Vandenberghe, L.: Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones. Mathematical Programming Computation 2(3–4), 167–201 (2010)

    Article  Google Scholar 

  2. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming (series B) 95, 249–277 (2003)

    Article  Google Scholar 

  3. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods for Solving the Minimum Graph Bisection Problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, pp. 112–124. Springer (2008)

    Google Scholar 

  4. Benson, H.Y., Vanderbei, R.J.: Solving Problems with Semidefinite and Related Constraints Using Interior-Point Methods for Nonlinear Programming. Mathematical Programming Ser. B 95, 279–302 (2003)

    Article  Google Scholar 

  5. Benson, S.J., Ye, Y.: Algorithm 875: DSDP5—software for semidefinite programming. ACM Trans. Math. Software 34(3), Art. 16 (2008)

    Article  Google Scholar 

  6. Borchers, B.: CSDP, A C library for semidefinite programming. Optimization Methods and Software 11, 613–623 (1999)

    Article  Google Scholar 

  7. Borchers, B., Young, J.: Implementation of a Primal-Dual Method for SDP on a Shared Memory Parallel Architecture. Comp. Opt. Appl. 37, 355–369 (2007)

    Article  Google Scholar 

  8. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming (series B) 95, 329–357 (2003)

    Article  Google Scholar 

  9. Burer, S., Monteiro, R.D.C.: Local minima and convergence in low-rank semidefinite programming. Mathematical Programming (series A) 103, 427–444 (2005)

    Article  Google Scholar 

  10. DIMACS 7th Challenge website, http://dimacs.rutgers.edu/Challenges/Seventh/ (2000)

  11. Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) User’s Manual — Version 7.0.5 Research Report B-448, Dept. of Math. and Comp. Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152-8552, January 2010.

    Google Scholar 

  12. Gijswijt, D.C., Mittelmann, H.D., Schrijver, A.: Semidefinite code bounds based on quadruple distances, IEEE Transaction on Information Theorem, to appear

    Google Scholar 

  13. Helmberg, C.: A Cutting Plane Algorithm for Large Scale Semidefinite Relaxations. In: Grötschel, M. (ed.) The Sharpest Cut, MPS-SIAM Series on Optimization, 233–256 (2004)

    Chapter  Google Scholar 

  14. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming, SIAM Journal on Optimization 6, 342–361 (1996)

    Article  Google Scholar 

  15. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM Journal on Optimization 10, 673–696 (2000)

    Article  Google Scholar 

  16. Helmberg, C., Kiwiel, K.C.: A Spectral Bundle Method with Bounds. Mathematical Programming Ser. B 93, 173–194 (2002)

    Article  Google Scholar 

  17. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problems. SIAM Journal on Optimization 7, 86–125 (1997)

    Article  Google Scholar 

  18. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Mathematical Programming (series B) 95, 407–430 (2003)

    Article  Google Scholar 

  19. Mittelmann, H.D.: Decision Tree for Optimization Software. http://plato.la.asu.edu/guide.html (2011)

  20. Mittelmann, H.D.: Benchmarks for Optimization Software. http://plato.la.asu.edu/bench.html (2011)

  21. Mittelmann, H. D., Vallentin, F.: High Accuracy Semidefinite Programming Bounds for Kissing Numbers. to appear in Experimental Mathematics (2010)

    Google Scholar 

  22. NEOS Server for Optimization. http://www-neos.mcs.anl.gov/neos/ (2011)

  23. Polik, I.: Conic optimization software. In Encyclopedia of Operations Research, Wiley (2010)

    Google Scholar 

  24. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11, 625–653 (1999)

    Article  Google Scholar 

  25. Sturm, J.F.: Central region method, In: Frenk, J.B.G. Roos, C., Terlaky, T., Zhang, S. (eds.) High Performance Optimization, pp. 157–194. Kluwer Academic Publishers (2000)

    Google Scholar 

  26. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Mathematical Programming Ser. B 95, 189–217 (2003)

    Article  Google Scholar 

  27. Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K.: A high-performance software package for semidefinite programs: SDPA 7. Research Report B-460, Dept. of Math. and Comp. Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152-8552, January 2010.

    Google Scholar 

  28. Ye, Y., Todd, M.J., Mizuno, S.: An \(O(\sqrt{n}L)\)-iteration homogeneous and self–dual linear programming algorithm. Mathematics of Operations Research 19, 53–67 (1994)

    Google Scholar 

  29. Zhao, X.-Y., Sun, D., Toh, K.-C.: A Newton-CG Augmented Lagrangian Method for Semidefinite Programming. SIAM Journal on Optimization 20, 1737–1765 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans D. Mittelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mittelmann, H.D. (2012). The State-of-the-Art in Conic Optimization Software. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0769-0_23

Download citation

Publish with us

Policies and ethics